Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F20%3A00539814" target="_blank" >RIV/68378050:_____/20:00539814 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22310/20:43921543

  • Výsledek na webu

    <a href="https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00443-6" target="_blank" >https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00443-6</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1186/s13321-020-00443-6" target="_blank" >10.1186/s13321-020-00443-6</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping

  • Popis výsledku v původním jazyce

    An affinity fingerprint is the vector consisting of compound's affinity or potency against the reference panel of protein targets. Here, we present the QAFFP fingerprint, 440 elements long in silico QSAR-based affinity fingerprint, components of which are predicted by Random Forest regression models trained on bioactivity data from the ChEMBL database. Both real-valued (rv-QAFFP) and binary (b-QAFFP) versions of the QAFFP fingerprint were implemented and their performance in similarity searching, biological activity classification and scaffold hopping was assessed and compared to that of the 1024 bits long Morgan2 fingerprint (the RDKit implementation of the ECFP4 fingerprint). In both similarity searching and biological activity classification, the QAFFP fingerprint yields retrieval rates, measured by AUC (similar to 0.65 and similar to 0.70 for similarity searching depending on data sets, and similar to 0.85 for classification) and EF5 (similar to 4.67 and similar to 5.82 for similarity searching depending on data sets, and similar to 2.10 for classification), comparable to that of the Morgan2 fingerprint (similarity searching AUC of similar to 0.57 and similar to 0.66, and EF5 of similar to 4.09 and similar to 6.41, depending on data sets, classification AUC of similar to 0.87, and EF5 of similar to 2.16). However, the QAFFP fingerprint outperforms the Morgan2 fingerprint in scaffold hopping as it is able to retrieve 1146 out of existing 1749 scaffolds, while the Morgan2 fingerprint reveals only 864 scaffolds.

  • Název v anglickém jazyce

    QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping

  • Popis výsledku anglicky

    An affinity fingerprint is the vector consisting of compound's affinity or potency against the reference panel of protein targets. Here, we present the QAFFP fingerprint, 440 elements long in silico QSAR-based affinity fingerprint, components of which are predicted by Random Forest regression models trained on bioactivity data from the ChEMBL database. Both real-valued (rv-QAFFP) and binary (b-QAFFP) versions of the QAFFP fingerprint were implemented and their performance in similarity searching, biological activity classification and scaffold hopping was assessed and compared to that of the 1024 bits long Morgan2 fingerprint (the RDKit implementation of the ECFP4 fingerprint). In both similarity searching and biological activity classification, the QAFFP fingerprint yields retrieval rates, measured by AUC (similar to 0.65 and similar to 0.70 for similarity searching depending on data sets, and similar to 0.85 for classification) and EF5 (similar to 4.67 and similar to 5.82 for similarity searching depending on data sets, and similar to 2.10 for classification), comparable to that of the Morgan2 fingerprint (similarity searching AUC of similar to 0.57 and similar to 0.66, and EF5 of similar to 4.09 and similar to 6.41, depending on data sets, classification AUC of similar to 0.87, and EF5 of similar to 2.16). However, the QAFFP fingerprint outperforms the Morgan2 fingerprint in scaffold hopping as it is able to retrieve 1146 out of existing 1749 scaffolds, while the Morgan2 fingerprint reveals only 864 scaffolds.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/LM2018130" target="_blank" >LM2018130: Národní infrastruktura chemické biologie</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Cheminformatics

  • ISSN

    1758-2946

  • e-ISSN

  • Svazek periodika

    12

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    16

  • Strana od-do

    39

  • Kód UT WoS článku

    000548756200001

  • EID výsledku v databázi Scopus