QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F20%3A00539814" target="_blank" >RIV/68378050:_____/20:00539814 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/60461373:22310/20:43921543
Výsledek na webu
<a href="https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00443-6" target="_blank" >https://jcheminf.biomedcentral.com/articles/10.1186/s13321-020-00443-6</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s13321-020-00443-6" target="_blank" >10.1186/s13321-020-00443-6</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
Popis výsledku v původním jazyce
An affinity fingerprint is the vector consisting of compound's affinity or potency against the reference panel of protein targets. Here, we present the QAFFP fingerprint, 440 elements long in silico QSAR-based affinity fingerprint, components of which are predicted by Random Forest regression models trained on bioactivity data from the ChEMBL database. Both real-valued (rv-QAFFP) and binary (b-QAFFP) versions of the QAFFP fingerprint were implemented and their performance in similarity searching, biological activity classification and scaffold hopping was assessed and compared to that of the 1024 bits long Morgan2 fingerprint (the RDKit implementation of the ECFP4 fingerprint). In both similarity searching and biological activity classification, the QAFFP fingerprint yields retrieval rates, measured by AUC (similar to 0.65 and similar to 0.70 for similarity searching depending on data sets, and similar to 0.85 for classification) and EF5 (similar to 4.67 and similar to 5.82 for similarity searching depending on data sets, and similar to 2.10 for classification), comparable to that of the Morgan2 fingerprint (similarity searching AUC of similar to 0.57 and similar to 0.66, and EF5 of similar to 4.09 and similar to 6.41, depending on data sets, classification AUC of similar to 0.87, and EF5 of similar to 2.16). However, the QAFFP fingerprint outperforms the Morgan2 fingerprint in scaffold hopping as it is able to retrieve 1146 out of existing 1749 scaffolds, while the Morgan2 fingerprint reveals only 864 scaffolds.
Název v anglickém jazyce
QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping
Popis výsledku anglicky
An affinity fingerprint is the vector consisting of compound's affinity or potency against the reference panel of protein targets. Here, we present the QAFFP fingerprint, 440 elements long in silico QSAR-based affinity fingerprint, components of which are predicted by Random Forest regression models trained on bioactivity data from the ChEMBL database. Both real-valued (rv-QAFFP) and binary (b-QAFFP) versions of the QAFFP fingerprint were implemented and their performance in similarity searching, biological activity classification and scaffold hopping was assessed and compared to that of the 1024 bits long Morgan2 fingerprint (the RDKit implementation of the ECFP4 fingerprint). In both similarity searching and biological activity classification, the QAFFP fingerprint yields retrieval rates, measured by AUC (similar to 0.65 and similar to 0.70 for similarity searching depending on data sets, and similar to 0.85 for classification) and EF5 (similar to 4.67 and similar to 5.82 for similarity searching depending on data sets, and similar to 2.10 for classification), comparable to that of the Morgan2 fingerprint (similarity searching AUC of similar to 0.57 and similar to 0.66, and EF5 of similar to 4.09 and similar to 6.41, depending on data sets, classification AUC of similar to 0.87, and EF5 of similar to 2.16). However, the QAFFP fingerprint outperforms the Morgan2 fingerprint in scaffold hopping as it is able to retrieve 1146 out of existing 1749 scaffolds, while the Morgan2 fingerprint reveals only 864 scaffolds.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/LM2018130" target="_blank" >LM2018130: Národní infrastruktura chemické biologie</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Cheminformatics
ISSN
1758-2946
e-ISSN
—
Svazek periodika
12
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
39
Kód UT WoS článku
000548756200001
EID výsledku v databázi Scopus
—