Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021675" target="_blank" >RIV/62690094:18450/24:50021675 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/10646489" target="_blank" >https://ieeexplore.ieee.org/document/10646489</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/OJSP.2024.3449816" target="_blank" >10.1109/OJSP.2024.3449816</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases
Popis výsledku v původním jazyce
The affinity propagation clustering (APC) algorithm is popular for fingerprint database clustering because it can cluster without pre-defining the number of clusters. However, the clustering performance of the APC algorithm heavily depends on the chosen fingerprint similarity metric, with distance-based metrics being the most commonly used. Despite its popularity, the APC algorithm lacks comprehensive research on how distance-based metrics affect clustering performance. This emphasizes the need for a better understanding of how these metrics influence its clustering performance, particularly in fingerprint databases. This paper investigates the impact of various distance-based fingerprint similarity metrics on the clustering performance of the APC algorithm. It identifies the best fingerprint similarity metric for optimal clustering performance for a given fingerprint database. The analysis is conducted across five experimentally generated online fingerprint databases, utilizing seven distance-based metrics: Euclidean, squared Euclidean, Manhattan, Spearman, cosine, Canberra, and Chebyshev distances. Using the silhouette score as the performance metric, the simulation results indicate that structural characteristics of the fingerprint database, such as the distribution of fingerprint vectors, play a key role in selecting the best fingerprint similarity metric. However, Euclidean and Manhattan distances are generally the preferable choices for use as fingerprint similarity metrics for the APC algorithm across most fingerprint databases, regardless of their structural characteristics. It is recommended that other factors, such as computational intensity and the presence or absence of outliers, be considered alongside the structural characteristics of the fingerprint database when choosing the appropriate fingerprint similarity metric for maximum clustering performance. Authors
Název v anglickém jazyce
Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases
Popis výsledku anglicky
The affinity propagation clustering (APC) algorithm is popular for fingerprint database clustering because it can cluster without pre-defining the number of clusters. However, the clustering performance of the APC algorithm heavily depends on the chosen fingerprint similarity metric, with distance-based metrics being the most commonly used. Despite its popularity, the APC algorithm lacks comprehensive research on how distance-based metrics affect clustering performance. This emphasizes the need for a better understanding of how these metrics influence its clustering performance, particularly in fingerprint databases. This paper investigates the impact of various distance-based fingerprint similarity metrics on the clustering performance of the APC algorithm. It identifies the best fingerprint similarity metric for optimal clustering performance for a given fingerprint database. The analysis is conducted across five experimentally generated online fingerprint databases, utilizing seven distance-based metrics: Euclidean, squared Euclidean, Manhattan, Spearman, cosine, Canberra, and Chebyshev distances. Using the silhouette score as the performance metric, the simulation results indicate that structural characteristics of the fingerprint database, such as the distribution of fingerprint vectors, play a key role in selecting the best fingerprint similarity metric. However, Euclidean and Manhattan distances are generally the preferable choices for use as fingerprint similarity metrics for the APC algorithm across most fingerprint databases, regardless of their structural characteristics. It is recommended that other factors, such as computational intensity and the presence or absence of outliers, be considered alongside the structural characteristics of the fingerprint database when choosing the appropriate fingerprint similarity metric for maximum clustering performance. Authors
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Open Journal of Signal Processing
ISSN
2644-1322
e-ISSN
2644-1322
Svazek periodika
5
Číslo periodika v rámci svazku
August
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
10
Strana od-do
1005-1014
Kód UT WoS článku
001317651300001
EID výsledku v databázi Scopus
2-s2.0-85202732480