Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F24%3A50021675" target="_blank" >RIV/62690094:18450/24:50021675 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/10646489" target="_blank" >https://ieeexplore.ieee.org/document/10646489</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/OJSP.2024.3449816" target="_blank" >10.1109/OJSP.2024.3449816</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases

  • Popis výsledku v původním jazyce

    The affinity propagation clustering (APC) algorithm is popular for fingerprint database clustering because it can cluster without pre-defining the number of clusters. However, the clustering performance of the APC algorithm heavily depends on the chosen fingerprint similarity metric, with distance-based metrics being the most commonly used. Despite its popularity, the APC algorithm lacks comprehensive research on how distance-based metrics affect clustering performance. This emphasizes the need for a better understanding of how these metrics influence its clustering performance, particularly in fingerprint databases. This paper investigates the impact of various distance-based fingerprint similarity metrics on the clustering performance of the APC algorithm. It identifies the best fingerprint similarity metric for optimal clustering performance for a given fingerprint database. The analysis is conducted across five experimentally generated online fingerprint databases, utilizing seven distance-based metrics: Euclidean, squared Euclidean, Manhattan, Spearman, cosine, Canberra, and Chebyshev distances. Using the silhouette score as the performance metric, the simulation results indicate that structural characteristics of the fingerprint database, such as the distribution of fingerprint vectors, play a key role in selecting the best fingerprint similarity metric. However, Euclidean and Manhattan distances are generally the preferable choices for use as fingerprint similarity metrics for the APC algorithm across most fingerprint databases, regardless of their structural characteristics. It is recommended that other factors, such as computational intensity and the presence or absence of outliers, be considered alongside the structural characteristics of the fingerprint database when choosing the appropriate fingerprint similarity metric for maximum clustering performance. Authors

  • Název v anglickém jazyce

    Impact of Varying Distance-Based Fingerprint Similarity Metrics on Affinity Propagation Clustering Performance in Received Signal Strength-Based Fingerprint Databases

  • Popis výsledku anglicky

    The affinity propagation clustering (APC) algorithm is popular for fingerprint database clustering because it can cluster without pre-defining the number of clusters. However, the clustering performance of the APC algorithm heavily depends on the chosen fingerprint similarity metric, with distance-based metrics being the most commonly used. Despite its popularity, the APC algorithm lacks comprehensive research on how distance-based metrics affect clustering performance. This emphasizes the need for a better understanding of how these metrics influence its clustering performance, particularly in fingerprint databases. This paper investigates the impact of various distance-based fingerprint similarity metrics on the clustering performance of the APC algorithm. It identifies the best fingerprint similarity metric for optimal clustering performance for a given fingerprint database. The analysis is conducted across five experimentally generated online fingerprint databases, utilizing seven distance-based metrics: Euclidean, squared Euclidean, Manhattan, Spearman, cosine, Canberra, and Chebyshev distances. Using the silhouette score as the performance metric, the simulation results indicate that structural characteristics of the fingerprint database, such as the distribution of fingerprint vectors, play a key role in selecting the best fingerprint similarity metric. However, Euclidean and Manhattan distances are generally the preferable choices for use as fingerprint similarity metrics for the APC algorithm across most fingerprint databases, regardless of their structural characteristics. It is recommended that other factors, such as computational intensity and the presence or absence of outliers, be considered alongside the structural characteristics of the fingerprint database when choosing the appropriate fingerprint similarity metric for maximum clustering performance. Authors

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20203 - Telecommunications

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Open Journal of Signal Processing

  • ISSN

    2644-1322

  • e-ISSN

    2644-1322

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    August

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    1005-1014

  • Kód UT WoS článku

    001317651300001

  • EID výsledku v databázi Scopus

    2-s2.0-85202732480