A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378050%3A_____%2F24%3A00597827" target="_blank" >RIV/68378050:_____/24:00597827 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216224:14110/24:00137084 RIV/00159816:_____/24:00081680
Výsledek na webu
<a href="https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.202400240" target="_blank" >https://analyticalsciencejournals.onlinelibrary.wiley.com/doi/10.1002/biot.202400240</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/biot.202400240" target="_blank" >10.1002/biot.202400240</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension
Popis výsledku v původním jazyce
The development of 3D organoids has provided a valuable tool for studying human tissue and organ development in vitro. Cerebral organoids, in particular, offer a unique platform for investigating neural diseases. However, current methods for generating cerebral organoids suffer from limitations such as labor-intensive protocols and high heterogeneity among organoids. To address these challenges, we present a microfluidic device designed to automate and streamline the formation and differentiation of cerebral organoids. The device utilizes microwells with two different shapes to promote the formation of a single aggregate per well and incorporates continuous medium flow for optimal nutrient exchange. In silico simulations supported the effectiveness of the microfluidic chip in replicating cellular microenvironments. Our results demonstrate that the microfluidic chip enables uniform growth of cerebral organoids, significantly reducing the hands-on time required for maintenance. Importantly, the performance of the microfluidic system is comparable to the standard 96-well plate format even when using half the amount of culture medium, and the resulting organoids exhibit substantially developed neuroepithelial buds and cortical structures. This study highlights the potential of custom-designed microfluidic technology in improving the efficiency of cerebral organoid culture.
Název v anglickém jazyce
A closed 3D printed microfluidic device for automated growth and differentiation of cerebral organoids from single-cell suspension
Popis výsledku anglicky
The development of 3D organoids has provided a valuable tool for studying human tissue and organ development in vitro. Cerebral organoids, in particular, offer a unique platform for investigating neural diseases. However, current methods for generating cerebral organoids suffer from limitations such as labor-intensive protocols and high heterogeneity among organoids. To address these challenges, we present a microfluidic device designed to automate and streamline the formation and differentiation of cerebral organoids. The device utilizes microwells with two different shapes to promote the formation of a single aggregate per well and incorporates continuous medium flow for optimal nutrient exchange. In silico simulations supported the effectiveness of the microfluidic chip in replicating cellular microenvironments. Our results demonstrate that the microfluidic chip enables uniform growth of cerebral organoids, significantly reducing the hands-on time required for maintenance. Importantly, the performance of the microfluidic system is comparable to the standard 96-well plate format even when using half the amount of culture medium, and the resulting organoids exhibit substantially developed neuroepithelial buds and cortical structures. This study highlights the potential of custom-designed microfluidic technology in improving the efficiency of cerebral organoid culture.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10601 - Cell biology
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biotechnology Journal
ISSN
1860-6768
e-ISSN
1860-7314
Svazek periodika
19
Číslo periodika v rámci svazku
8
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
3
Strana od-do
e2400240
Kód UT WoS článku
001303094800001
EID výsledku v databázi Scopus
2-s2.0-85202649553