Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F16%3A00460558" target="_blank" >RIV/68378271:_____/16:00460558 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/16:10331103
Výsledek na webu
<a href="http://dx.doi.org/10.1088/0953-8984/28/20/206004" target="_blank" >http://dx.doi.org/10.1088/0953-8984/28/20/206004</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/0953-8984/28/20/206004" target="_blank" >10.1088/0953-8984/28/20/206004</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy
Popis výsledku v původním jazyce
Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences the single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on the samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly- crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy (Ed-d) were proportional with each other. Our results are in excellent agreement with the Monte-Carlo simulations of particle growth. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of an energy barrier influenced by nterparticle interactions.
Název v anglickém jazyce
Understanding particle size and distance driven competition of interparticle interactions and effective single-particle anisotropy
Popis výsledku anglicky
Magnetic response of single-domain nanoparticles (NPs) in concentrated systems is strongly affected by mutual interparticle interactions. However, particle proximity significantly influences the single-particle effective anisotropy. To solve which of these two phenomena plays a dominant role in the magnetic response of real NP systems, systematic study on the samples with well-defined parameters is required. In our work, we prepared a series of nanocomposites constituted of highly- crystalline and well-isolated CoFe2O4 NPs embedded in an amorphous SiO2 matrix using a single-molecule precursor method. This preparation method enabled us to reach a wide interval of particle size and concentration. We observed that the characteristic parameters of the single-domain state (coercivity, blocking temperature) and dipole-dipole interaction energy (Ed-d) were proportional with each other. Our results are in excellent agreement with the Monte-Carlo simulations of particle growth. Therefore, the concept of modified NP effective anisotropy explains the magnetic response of our concentrated NP systems better than the concept of an energy barrier influenced by nterparticle interactions.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BM - Fyzika pevných látek a magnetismus
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-01953S" target="_blank" >GA15-01953S: Nanokompozitní systémy plasmonických/magnetických nanočástic - grafenu - aromatických molekul pro zesílené Ramanské procesy</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physics-Condensed Matter
ISSN
0953-8984
e-ISSN
—
Svazek periodika
28
Číslo periodika v rámci svazku
20
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
—
Kód UT WoS článku
000376409000010
EID výsledku v databázi Scopus
2-s2.0-84969931508