Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F18%3A00489698" target="_blank" >RIV/68378271:_____/18:00489698 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.biomaterials.2018.02.031" target="_blank" >http://dx.doi.org/10.1016/j.biomaterials.2018.02.031</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.biomaterials.2018.02.031" target="_blank" >10.1016/j.biomaterials.2018.02.031</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells
Popis výsledku v původním jazyce
Cellular function is modulated by the electric membrane potential controlling intracellular physiology and signal propagation from a motor neuron to a muscle fiber resulting in muscle contraction. Unlike electric fields, magnetic fields are not attenuated by biological materials and penetrate deep into the tissue. We used complex spatiotemporal magnetic fields (17-70 mT) to control intracellular signaling in skeletal muscle cells. By changing different parameters of the alternating magnetic field (amplitude, inversion time, rotation frequency), we induced transient depolarization of cellular membranes leading to i) Na+ influx through voltage-gated sodium channels (VGSC), ii) cytosolic calcium increase, and iii) VGSC- and ryanodine receptor-dependent increase of actin polymerization. The ion fluxes occurred only, when the field was applied and returned to baseline after the field was turned off. The 30-s-activation cycle could be repeated without any loss of signal intensity.
Název v anglickém jazyce
Spatiotemporal magnetic fields enhance cytosolic Ca2+ levels and induce actin polymerization via activation of voltage-gated sodium channels in skeletal muscle cells
Popis výsledku anglicky
Cellular function is modulated by the electric membrane potential controlling intracellular physiology and signal propagation from a motor neuron to a muscle fiber resulting in muscle contraction. Unlike electric fields, magnetic fields are not attenuated by biological materials and penetrate deep into the tissue. We used complex spatiotemporal magnetic fields (17-70 mT) to control intracellular signaling in skeletal muscle cells. By changing different parameters of the alternating magnetic field (amplitude, inversion time, rotation frequency), we induced transient depolarization of cellular membranes leading to i) Na+ influx through voltage-gated sodium channels (VGSC), ii) cytosolic calcium increase, and iii) VGSC- and ryanodine receptor-dependent increase of actin polymerization. The ion fluxes occurred only, when the field was applied and returned to baseline after the field was turned off. The 30-s-activation cycle could be repeated without any loss of signal intensity.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10610 - Biophysics
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Biomaterials
ISSN
0142-9612
e-ISSN
—
Svazek periodika
163
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
174-184
Kód UT WoS článku
000428606700016
EID výsledku v databázi Scopus
2-s2.0-85042208980