Direct Au-C contacts based on biphenylene for single molecule circuits
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F18%3A00507903" target="_blank" >RIV/68378271:_____/18:00507903 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11320/18:10391992
Výsledek na webu
<a href="https://doi.org/10.1039/c8cp00613j" target="_blank" >https://doi.org/10.1039/c8cp00613j</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/c8cp00613j" target="_blank" >10.1039/c8cp00613j</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Direct Au-C contacts based on biphenylene for single molecule circuits
Popis výsledku v původním jazyce
We propose a novel platform for stable and highly conducting single molecule electronics and characterize its mechanical, electronic and conducting properties using ab initio simulations. We study a biphenylene-based molecular architecture on gold and consider that the antiaromatic instability of biphenylene leads to the breaking of internal carbon–carbon bonds and subsequent formation of Au–C covalent bonds with the substrate. In the resulting conformation the conjugated rings have a large twist angle and stand almost upright on the surface. The top contact is realized by functionalizing one end of the biphenylene unit with a chemical linker group, which in the adsorbed geometry is positioned far from the surface. We consider several linker terminations for this top contact, which is approached in our simulations by a gold tip. Using Density-Functional Theory (DFT) and Non-Equilibrium Green's Function (NEGF) methods, we quantify the mechanical and electron transport properties of the molecular junction and discuss their relationship with the nature of the linker group. Our results show that this biphenylene-based platform is very stable and provides high electronic transparency to current flow, demonstrating its potential in single molecule conductance studies.
Název v anglickém jazyce
Direct Au-C contacts based on biphenylene for single molecule circuits
Popis výsledku anglicky
We propose a novel platform for stable and highly conducting single molecule electronics and characterize its mechanical, electronic and conducting properties using ab initio simulations. We study a biphenylene-based molecular architecture on gold and consider that the antiaromatic instability of biphenylene leads to the breaking of internal carbon–carbon bonds and subsequent formation of Au–C covalent bonds with the substrate. In the resulting conformation the conjugated rings have a large twist angle and stand almost upright on the surface. The top contact is realized by functionalizing one end of the biphenylene unit with a chemical linker group, which in the adsorbed geometry is positioned far from the surface. We consider several linker terminations for this top contact, which is approached in our simulations by a gold tip. Using Density-Functional Theory (DFT) and Non-Equilibrium Green's Function (NEGF) methods, we quantify the mechanical and electron transport properties of the molecular junction and discuss their relationship with the nature of the linker group. Our results show that this biphenylene-based platform is very stable and provides high electronic transparency to current flow, demonstrating its potential in single molecule conductance studies.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Chemistry Chemical Physics
ISSN
1463-9076
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
15
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
6
Strana od-do
10378-10383
Kód UT WoS článku
000430537600071
EID výsledku v databázi Scopus
2-s2.0-85045850863