Selective laser melting of iron: multiscale characterization of mechanical properties
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00541825" target="_blank" >RIV/68378271:_____/21:00541825 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61388998:_____/21:00541825 RIV/60461373:22310/21:43922809
Výsledek na webu
<a href="https://doi.org/10.1016/j.msea.2020.140316" target="_blank" >https://doi.org/10.1016/j.msea.2020.140316</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.msea.2020.140316" target="_blank" >10.1016/j.msea.2020.140316</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Selective laser melting of iron: multiscale characterization of mechanical properties
Popis výsledku v původním jazyce
The complex study of the mechanical properties of pure iron produced by selective laser melting (SLM) revealed enhanced values of the yield stress and ultimate tensile strength as compared to the material produced in a classic way. These values result from high dislocation density, presence of interstitial carbon and small precipitates. In situ tensile experiments revealed that the basic mechanism of plastic deformation in this material, the structure of which was described in detail previously [Mater. Charact. 154 (2019) 222], is the emission of dislocations from dislocation walls in the material. From the yield drop at the stress-strain dependence, the effective binding energy of carbon to dislocations is estimated. SLM iron also exhibits anisotropy of nanohardness showing maxima for orientations in the middle of the orientation triangle but also at {100} and {110} corners. This anisotropy suggests that the deformation is affected by the splitting of 1/2(111) dislocations on {110} planes into partials on {112} planes.
Název v anglickém jazyce
Selective laser melting of iron: multiscale characterization of mechanical properties
Popis výsledku anglicky
The complex study of the mechanical properties of pure iron produced by selective laser melting (SLM) revealed enhanced values of the yield stress and ultimate tensile strength as compared to the material produced in a classic way. These values result from high dislocation density, presence of interstitial carbon and small precipitates. In situ tensile experiments revealed that the basic mechanism of plastic deformation in this material, the structure of which was described in detail previously [Mater. Charact. 154 (2019) 222], is the emission of dislocations from dislocation walls in the material. From the yield drop at the stress-strain dependence, the effective binding energy of carbon to dislocations is estimated. SLM iron also exhibits anisotropy of nanohardness showing maxima for orientations in the middle of the orientation triangle but also at {100} and {110} corners. This anisotropy suggests that the deformation is affected by the splitting of 1/2(111) dislocations on {110} planes into partials on {112} planes.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Materials Science and Engineering A Structural Materials Properties Microstructure and Processing
ISSN
0921-5093
e-ISSN
1873-4936
Svazek periodika
800
Číslo periodika v rámci svazku
Jan
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
10
Strana od-do
140316
Kód UT WoS článku
000593929200003
EID výsledku v databázi Scopus
2-s2.0-85091942449