Persistent fluctuations of the swarm size of Brownian bees
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F21%3A00551976" target="_blank" >RIV/68378271:_____/21:00551976 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1103/PhysRevE.103.032140" target="_blank" >https://doi.org/10.1103/PhysRevE.103.032140</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1103/PhysRevE.103.032140" target="_blank" >10.1103/PhysRevE.103.032140</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Persistent fluctuations of the swarm size of Brownian bees
Popis výsledku v původním jazyce
The “Brownian bees” model describes a system of N-independent branching Brownian particles. At each branching event the particle farthest from the origin is removed so that the number of particles remains constant at all times. Berestycki et al. [arXiv:2006.06486] proved that at N → ∞ the coarse-grained spatial density of this particle system lives in a spherically symmetric domain and is described by the solution of a free boundary problem for a deterministic reaction-diffusion equation. Furthermore, they showed [arXiv:2005.09384] that, at long times, this solution approaches a unique spherically symmetric steady state with compact support: a sphere whose radius 0 depends on the spatial dimension d.
Název v anglickém jazyce
Persistent fluctuations of the swarm size of Brownian bees
Popis výsledku anglicky
The “Brownian bees” model describes a system of N-independent branching Brownian particles. At each branching event the particle farthest from the origin is removed so that the number of particles remains constant at all times. Berestycki et al. [arXiv:2006.06486] proved that at N → ∞ the coarse-grained spatial density of this particle system lives in a spherically symmetric domain and is described by the solution of a free boundary problem for a deterministic reaction-diffusion equation. Furthermore, they showed [arXiv:2005.09384] that, at long times, this solution approaches a unique spherically symmetric steady state with compact support: a sphere whose radius 0 depends on the spatial dimension d.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF15_003%2F0000449" target="_blank" >EF15_003/0000449: High Field Initiative (Výzkum velmi intenzivních polí)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Physical Review E
ISSN
2470-0045
e-ISSN
2470-0053
Svazek periodika
103
Číslo periodika v rámci svazku
3
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
9
Strana od-do
032140
Kód UT WoS článku
000650939400001
EID výsledku v databázi Scopus
2-s2.0-85104249460