Spatial localization of defects in halide perovskites using photothermal deflection spectroscopy
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00583027" target="_blank" >RIV/68378271:_____/24:00583027 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0352932" target="_blank" >https://hdl.handle.net/11104/0352932</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1021/acs.jpclett.3c02966" target="_blank" >10.1021/acs.jpclett.3c02966</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Spatial localization of defects in halide perovskites using photothermal deflection spectroscopy
Popis výsledku v původním jazyce
Photothermal deflection spectroscopy (PDS) emerges as a highly sensitive noncontact technique for measuring absorption spectra and serves for studying defect states within semiconductor thin films. In our study, we applied PDS to methyl-ammonium lead bromide single crystals. By analyzing the frequency dependence of the PDS spectra and the phase difference of the signal, we can differentiate between surface and bulk deep defect absorption states. This methodology allowed us to investigate the effects of bismuth doping and light-induced degradation. The identified absorption states are attributed to MA+ vibrational states and structural defects, and their influence on the nonradiative recombination probability is discussed. This distinction significantly enhances our capability to characterize and analyze perovskite materials at a deeper level.
Název v anglickém jazyce
Spatial localization of defects in halide perovskites using photothermal deflection spectroscopy
Popis výsledku anglicky
Photothermal deflection spectroscopy (PDS) emerges as a highly sensitive noncontact technique for measuring absorption spectra and serves for studying defect states within semiconductor thin films. In our study, we applied PDS to methyl-ammonium lead bromide single crystals. By analyzing the frequency dependence of the PDS spectra and the phase difference of the signal, we can differentiate between surface and bulk deep defect absorption states. This methodology allowed us to investigate the effects of bismuth doping and light-induced degradation. The identified absorption states are attributed to MA+ vibrational states and structural defects, and their influence on the nonradiative recombination probability is discussed. This distinction significantly enhances our capability to characterize and analyze perovskite materials at a deeper level.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10302 - Condensed matter physics (including formerly solid state physics, supercond.)
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Physical Chemistry Letters
ISSN
1948-7185
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
6
Strana od-do
1273-1278
Kód UT WoS článku
001159155800001
EID výsledku v databázi Scopus
2-s2.0-85184615584