Design of "green" plasmonic nanocomposites with multi-band blue emission for ultrafast laser hyperthermia
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00599394" target="_blank" >RIV/68378271:_____/24:00599394 - isvavai.cz</a>
Výsledek na webu
<a href="https://hdl.handle.net/11104/0356864" target="_blank" >https://hdl.handle.net/11104/0356864</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1039/d4nr03120b" target="_blank" >10.1039/d4nr03120b</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Design of "green" plasmonic nanocomposites with multi-band blue emission for ultrafast laser hyperthermia
Popis výsledku v původním jazyce
Non-toxic nanoscale materials are widely employed for different healthcare applications but their performance is still considerably limited. In this paper, various approaches of the environment-friendly ultrafast laser processing were employed for remodelling IV group semiconductor nanostructures and synthesizing highly-stable (ξ-potential is up to –47 mV) colloidal solutions of plasmonic (525 nm) nanocomposites with a strong size-dependent chemical content. All nanocomposites exhibited a remarkable lamp-excited multi-band blue emission centred at around 420 nm that is considerably (~10-fold for Au-SiC) stronger for nanocomposites prepared by the laser co-fragmentation technique. The latter formed a larger amount of smaller narrowly-dispersed (~ 4 nm for Au-Si) plasmonic nanostructures as compared to the direct laser ablation. Moreover, it also led to a higher content of semiconductor elements (~1.7-fold for Au-Ge) in nanocomposites correlating with a lower (~ 30 %) electrical conductivity. Aqueous colloidal solutions revealed a higher degree (~ 80 %) of the femtosecond laser-induced heating for all nanocomposites formed by the direct laser ablation. These findings highlight the peculiarities of the used laser processing approaches and considerably facilitate designing of specific multi-modal plasmono-fluorescence (biosensing, bioimaging, hyperthermia) nanocomposites with a required performance significantly enlarging the application area of semiconductor nanostructures.
Název v anglickém jazyce
Design of "green" plasmonic nanocomposites with multi-band blue emission for ultrafast laser hyperthermia
Popis výsledku anglicky
Non-toxic nanoscale materials are widely employed for different healthcare applications but their performance is still considerably limited. In this paper, various approaches of the environment-friendly ultrafast laser processing were employed for remodelling IV group semiconductor nanostructures and synthesizing highly-stable (ξ-potential is up to –47 mV) colloidal solutions of plasmonic (525 nm) nanocomposites with a strong size-dependent chemical content. All nanocomposites exhibited a remarkable lamp-excited multi-band blue emission centred at around 420 nm that is considerably (~10-fold for Au-SiC) stronger for nanocomposites prepared by the laser co-fragmentation technique. The latter formed a larger amount of smaller narrowly-dispersed (~ 4 nm for Au-Si) plasmonic nanostructures as compared to the direct laser ablation. Moreover, it also led to a higher content of semiconductor elements (~1.7-fold for Au-Ge) in nanocomposites correlating with a lower (~ 30 %) electrical conductivity. Aqueous colloidal solutions revealed a higher degree (~ 80 %) of the femtosecond laser-induced heating for all nanocomposites formed by the direct laser ablation. These findings highlight the peculiarities of the used laser processing approaches and considerably facilitate designing of specific multi-modal plasmono-fluorescence (biosensing, bioimaging, hyperthermia) nanocomposites with a required performance significantly enlarging the application area of semiconductor nanostructures.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
21001 - Nano-materials (production and properties)
Návaznosti výsledku
Projekt
<a href="/cs/project/EH22_008%2F0004596" target="_blank" >EH22_008/0004596: Senzory a detektory pro informační společnost budoucnosti</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nanoscale
ISSN
2040-3364
e-ISSN
2040-3372
Svazek periodika
16
Číslo periodika v rámci svazku
41
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
16
Strana od-do
19453-19468
Kód UT WoS článku
001322541200001
EID výsledku v databázi Scopus
2-s2.0-85205937642