Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378271%3A_____%2F24%3A00602361" target="_blank" >RIV/68378271:_____/24:00602361 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/60461373:22310/24:43930793

  • Výsledek na webu

    <a href="https://hdl.handle.net/11104/0359587" target="_blank" >https://hdl.handle.net/11104/0359587</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.jmrt.2024.11.132" target="_blank" >10.1016/j.jmrt.2024.11.132</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries

  • Popis výsledku v původním jazyce

    A relationship between the tensile yield stress and grain size i.e., Hall-Petch (H–P) law, for an ultrafine-grained (UFG) Zn was experimentally evaluated for the first time. In reality, it is problematic to assess this prediction using experimental results due to the low recrystallization temperature of a pure Zn. In order to do so, three Zn bulk materials with the intercept grain size (dl) ranging from 0.6 to 1.1 μm, stabilized with a small portion of nanoscale ZnO dispersoids positioned at high angle grain boundaries (HAGB), were fabricated from fine pure Zn powders. The material with the finest grain size of 0.6 μm, ever reported for unalloyed Zn, also exhibited the highest ultimate tensile and 0.2% strain offset yield strengths (YS0.2), ever reported for unalloyed Zn. The strengths were accompanied by a reasonably high ductility. Deformation in the presented materials was attributed to the grain boundary sliding (GBS) mechanism. The experimental data were compared with a theoretical model of the deformation behavior of UFG metals based on GBS through dislocation glide. We confirmed, that the linear H–P relation YS0.2 = 40.8 + 104.8 d− 0.5 l remained in force in the range of dl = ~400–0.6 μm. A grain refinement softening in UFG region predicted by the theoretical model and other experimental works was avoided. This was attributed to the presence and an effective stabilizing effect of the nano-metric ZnO at HAGB, which impeded GBS. The practical implications of the presented concept of Zn-based bioresorbable material are discussed from the point of view of potential applications in implantology.

  • Název v anglickém jazyce

    Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries

  • Popis výsledku anglicky

    A relationship between the tensile yield stress and grain size i.e., Hall-Petch (H–P) law, for an ultrafine-grained (UFG) Zn was experimentally evaluated for the first time. In reality, it is problematic to assess this prediction using experimental results due to the low recrystallization temperature of a pure Zn. In order to do so, three Zn bulk materials with the intercept grain size (dl) ranging from 0.6 to 1.1 μm, stabilized with a small portion of nanoscale ZnO dispersoids positioned at high angle grain boundaries (HAGB), were fabricated from fine pure Zn powders. The material with the finest grain size of 0.6 μm, ever reported for unalloyed Zn, also exhibited the highest ultimate tensile and 0.2% strain offset yield strengths (YS0.2), ever reported for unalloyed Zn. The strengths were accompanied by a reasonably high ductility. Deformation in the presented materials was attributed to the grain boundary sliding (GBS) mechanism. The experimental data were compared with a theoretical model of the deformation behavior of UFG metals based on GBS through dislocation glide. We confirmed, that the linear H–P relation YS0.2 = 40.8 + 104.8 d− 0.5 l remained in force in the range of dl = ~400–0.6 μm. A grain refinement softening in UFG region predicted by the theoretical model and other experimental works was avoided. This was attributed to the presence and an effective stabilizing effect of the nano-metric ZnO at HAGB, which impeded GBS. The practical implications of the presented concept of Zn-based bioresorbable material are discussed from the point of view of potential applications in implantology.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20501 - Materials engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Journal of Materials Research and Technology-JMR&T

  • ISSN

    2238-7854

  • e-ISSN

    2214-0697

  • Svazek periodika

    33

  • Číslo periodika v rámci svazku

    Nov

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    11

  • Strana od-do

    7458-7468

  • Kód UT WoS článku

    001360920000001

  • EID výsledku v databázi Scopus

    2-s2.0-85208978937