Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F60461373%3A22310%2F24%3A43930793" target="_blank" >RIV/60461373:22310/24:43930793 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378271:_____/24:00602361
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2238785424026607?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2238785424026607?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmrt.2024.11.132" target="_blank" >10.1016/j.jmrt.2024.11.132</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries
Popis výsledku v původním jazyce
A relationship between the tensile yield stress and grain size i.e., Hall-Petch (H-P) law, for an ultrafine-grained (UFG) Zn was experimentally evaluated for the first time. In reality, it is problematic to assess this prediction using experimental results due to the low recrystallization temperature of a pure Zn. In order to do so, three Zn bulk materials with the intercept grain size (d(l)) ranging from 0.6 to 1.1 mu m, stabilized with a small portion of nanoscale ZnO dispersoids positioned at high angle grain boundaries (HAGB), were fabricated from fine pure Zn powders. The material with the finest grain size of 0.6 mu m, ever reported for unalloyed Zn, also exhibited the highest ultimate tensile and 0.2% strain offset yield strengths (YS0.2), ever reported for unalloyed Zn. The strengths were accompanied by a reasonably high ductility. Deformation in the presented materials was attributed to the grain boundary sliding (GBS) mechanism. The experimental data were compared with a theoretical model of the deformation behavior of UFG metals based on GBS through dislocation glide. We confirmed, that the linear H-P relation YS0.2 = 40.8 + 104.8 d(l)(-0.5) remained in force in the range of d(l) = similar to 400-0.6 mu m. A grain refinement softening in UFG region predicted by the theoretical model and other experimental works was avoided. This was attributed to the presence and an effective stabilizing effect of the nano-metric ZnO at HAGB, which impeded GBS. The practical implications of the presented concept of Zn-based bioresorbable material are discussed from the point of view of potential applications in implantology.
Název v anglickém jazyce
Hall-Petch strengthening in ultrafine-grained Zn with stabilized boundaries
Popis výsledku anglicky
A relationship between the tensile yield stress and grain size i.e., Hall-Petch (H-P) law, for an ultrafine-grained (UFG) Zn was experimentally evaluated for the first time. In reality, it is problematic to assess this prediction using experimental results due to the low recrystallization temperature of a pure Zn. In order to do so, three Zn bulk materials with the intercept grain size (d(l)) ranging from 0.6 to 1.1 mu m, stabilized with a small portion of nanoscale ZnO dispersoids positioned at high angle grain boundaries (HAGB), were fabricated from fine pure Zn powders. The material with the finest grain size of 0.6 mu m, ever reported for unalloyed Zn, also exhibited the highest ultimate tensile and 0.2% strain offset yield strengths (YS0.2), ever reported for unalloyed Zn. The strengths were accompanied by a reasonably high ductility. Deformation in the presented materials was attributed to the grain boundary sliding (GBS) mechanism. The experimental data were compared with a theoretical model of the deformation behavior of UFG metals based on GBS through dislocation glide. We confirmed, that the linear H-P relation YS0.2 = 40.8 + 104.8 d(l)(-0.5) remained in force in the range of d(l) = similar to 400-0.6 mu m. A grain refinement softening in UFG region predicted by the theoretical model and other experimental works was avoided. This was attributed to the presence and an effective stabilizing effect of the nano-metric ZnO at HAGB, which impeded GBS. The practical implications of the presented concept of Zn-based bioresorbable material are discussed from the point of view of potential applications in implantology.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Materials Research and Technology-JMR&T
ISSN
2238-7854
e-ISSN
2214-0697
Svazek periodika
33
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
ZA - Jihoafrická republika
Počet stran výsledku
11
Strana od-do
7458-7468
Kód UT WoS článku
001360920000001
EID výsledku v databázi Scopus
—