An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F19%3A00505587" target="_blank" >RIV/68378289:_____/19:00505587 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68378289:_____/19:00507882 RIV/86652079:_____/19:00505587 RIV/86652079:_____/19:00507882 RIV/00216208:11310/19:10398770
Výsledek na webu
<a href="https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5462" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5462</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/joc.5462" target="_blank" >10.1002/joc.5462</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment
Popis výsledku v původním jazyce
VALUE is an open European collaboration to intercompare downscaling approaches for climate change research, focusing on different validation aspects (marginal, temporal, extremes, spatial, process-based, etc.). Here we describe the participating methods and first results from the first experiment, using 'perfect reanalysis (and reanalysis-driven regional climate model (RCM)) predictors to assess the intrinsic performance of the methods for downscaling precipitation and temperatures over a set of 86 stations representative of the main climatic regions in Europe. This study constitutes the largest and most comprehensive to date intercomparison of statistical downscaling methods, covering the three common downscaling approaches (perfect prognosis, model output statistics-including bias correction-and weather generators) with a total of over 50 downscaling methods representative of the most common techniques. Overall, most of the downscaling methods greatly improve (reanalysis or RCM) raw model biases and no approach or technique seems to be superior in general, because there is a large method-to-method variability. The main factors most influencing the results are the seasonal calibration of the methods (e.g., using a moving window) and their stochastic nature. The particular predictors used also play an important role in cases where the comparison was possible, both for the validation results and for the strength of the predictor-predictand link, indicating the local variability explained. However, the present study cannot give a conclusive assessment of the skill of the methods to simulate regional future climates, and further experiments will be soon performed in the framework of the EURO-CORDEX initiative (where VALUE activities have merged and follow on). Finally, research transparency and reproducibility has been a major concern and substantive steps have been taken. In particular, the necessary data to run the experiments are provided at http://www.value-cost.eu/data and data and validation results are available from the VALUE validation portal for further investigation: http://www.value-cost.eu/validationportal.
Název v anglickém jazyce
An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment
Popis výsledku anglicky
VALUE is an open European collaboration to intercompare downscaling approaches for climate change research, focusing on different validation aspects (marginal, temporal, extremes, spatial, process-based, etc.). Here we describe the participating methods and first results from the first experiment, using 'perfect reanalysis (and reanalysis-driven regional climate model (RCM)) predictors to assess the intrinsic performance of the methods for downscaling precipitation and temperatures over a set of 86 stations representative of the main climatic regions in Europe. This study constitutes the largest and most comprehensive to date intercomparison of statistical downscaling methods, covering the three common downscaling approaches (perfect prognosis, model output statistics-including bias correction-and weather generators) with a total of over 50 downscaling methods representative of the most common techniques. Overall, most of the downscaling methods greatly improve (reanalysis or RCM) raw model biases and no approach or technique seems to be superior in general, because there is a large method-to-method variability. The main factors most influencing the results are the seasonal calibration of the methods (e.g., using a moving window) and their stochastic nature. The particular predictors used also play an important role in cases where the comparison was possible, both for the validation results and for the strength of the predictor-predictand link, indicating the local variability explained. However, the present study cannot give a conclusive assessment of the skill of the methods to simulate regional future climates, and further experiments will be soon performed in the framework of the EURO-CORDEX initiative (where VALUE activities have merged and follow on). Finally, research transparency and reproducibility has been a major concern and substantive steps have been taken. In particular, the necessary data to run the experiments are provided at http://www.value-cost.eu/data and data and validation results are available from the VALUE validation portal for further investigation: http://www.value-cost.eu/validationportal.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10510 - Climatic research
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Climatology
ISSN
0899-8418
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
9 Special Issue
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
36
Strana od-do
3750-3785
Kód UT WoS článku
000474001900006
EID výsledku v databázi Scopus
2-s2.0-85044278878