Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F19%3A00505587" target="_blank" >RIV/68378289:_____/19:00505587 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378289:_____/19:00507882 RIV/86652079:_____/19:00505587 RIV/86652079:_____/19:00507882 RIV/00216208:11310/19:10398770

  • Výsledek na webu

    <a href="https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5462" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/10.1002/joc.5462</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1002/joc.5462" target="_blank" >10.1002/joc.5462</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment

  • Popis výsledku v původním jazyce

    VALUE is an open European collaboration to intercompare downscaling approaches for climate change research, focusing on different validation aspects (marginal, temporal, extremes, spatial, process-based, etc.). Here we describe the participating methods and first results from the first experiment, using 'perfect reanalysis (and reanalysis-driven regional climate model (RCM)) predictors to assess the intrinsic performance of the methods for downscaling precipitation and temperatures over a set of 86 stations representative of the main climatic regions in Europe. This study constitutes the largest and most comprehensive to date intercomparison of statistical downscaling methods, covering the three common downscaling approaches (perfect prognosis, model output statistics-including bias correction-and weather generators) with a total of over 50 downscaling methods representative of the most common techniques. Overall, most of the downscaling methods greatly improve (reanalysis or RCM) raw model biases and no approach or technique seems to be superior in general, because there is a large method-to-method variability. The main factors most influencing the results are the seasonal calibration of the methods (e.g., using a moving window) and their stochastic nature. The particular predictors used also play an important role in cases where the comparison was possible, both for the validation results and for the strength of the predictor-predictand link, indicating the local variability explained. However, the present study cannot give a conclusive assessment of the skill of the methods to simulate regional future climates, and further experiments will be soon performed in the framework of the EURO-CORDEX initiative (where VALUE activities have merged and follow on). Finally, research transparency and reproducibility has been a major concern and substantive steps have been taken. In particular, the necessary data to run the experiments are provided at http://www.value-cost.eu/data and data and validation results are available from the VALUE validation portal for further investigation: http://www.value-cost.eu/validationportal.

  • Název v anglickém jazyce

    An intercomparison of a large ensemble of statistical downscaling methods over Europe: Results from the VALUE perfect predictor cross-validation experiment

  • Popis výsledku anglicky

    VALUE is an open European collaboration to intercompare downscaling approaches for climate change research, focusing on different validation aspects (marginal, temporal, extremes, spatial, process-based, etc.). Here we describe the participating methods and first results from the first experiment, using 'perfect reanalysis (and reanalysis-driven regional climate model (RCM)) predictors to assess the intrinsic performance of the methods for downscaling precipitation and temperatures over a set of 86 stations representative of the main climatic regions in Europe. This study constitutes the largest and most comprehensive to date intercomparison of statistical downscaling methods, covering the three common downscaling approaches (perfect prognosis, model output statistics-including bias correction-and weather generators) with a total of over 50 downscaling methods representative of the most common techniques. Overall, most of the downscaling methods greatly improve (reanalysis or RCM) raw model biases and no approach or technique seems to be superior in general, because there is a large method-to-method variability. The main factors most influencing the results are the seasonal calibration of the methods (e.g., using a moving window) and their stochastic nature. The particular predictors used also play an important role in cases where the comparison was possible, both for the validation results and for the strength of the predictor-predictand link, indicating the local variability explained. However, the present study cannot give a conclusive assessment of the skill of the methods to simulate regional future climates, and further experiments will be soon performed in the framework of the EURO-CORDEX initiative (where VALUE activities have merged and follow on). Finally, research transparency and reproducibility has been a major concern and substantive steps have been taken. In particular, the necessary data to run the experiments are provided at http://www.value-cost.eu/data and data and validation results are available from the VALUE validation portal for further investigation: http://www.value-cost.eu/validationportal.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10510 - Climatic research

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Climatology

  • ISSN

    0899-8418

  • e-ISSN

  • Svazek periodika

    39

  • Číslo periodika v rámci svazku

    9 Special Issue

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    36

  • Strana od-do

    3750-3785

  • Kód UT WoS článku

    000474001900006

  • EID výsledku v databázi Scopus

    2-s2.0-85044278878