The VALUE perfect predictor experiment: evaluation of temporal variability
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F19%3A00478292" target="_blank" >RIV/68378289:_____/19:00478292 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/19:10398771
Výsledek na webu
<a href="https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.5222" target="_blank" >https://rmets.onlinelibrary.wiley.com/doi/pdf/10.1002/joc.5222</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/joc.5222" target="_blank" >10.1002/joc.5222</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The VALUE perfect predictor experiment: evaluation of temporal variability
Popis výsledku v původním jazyce
Temporal variability is an important feature of climate, comprising systematic variations such as the annual cycle, as well as residual temporal variations such as short-term variations, spells and variability from interannual to long-term trends. The EU-COST Action VALUE developed a comprehensive framework to evaluate downscaling methods. Here we present the evaluation of the perfect predictor experiment for temporal variability. Overall, the behaviour of the different approaches turned out to be as expected from their structure and implementation. The chosen regional climate model adds value to reanalysis data for most considered aspects, for all seasons and for both temperature and precipitation. Bias correction methods do not directly modify temporal variability apart from the annual cycle. However, wet day corrections substantially improve transition probabilities and spell length distributions, whereas interannual variability is in some cases deteriorated by quantile mapping. The performance of perfect prognosis (PP) statistical downscaling methods varies strongly from aspect to aspect and method to method, and depends strongly on the predictor choice. Unconditional weather generators tend to perform well for the aspects they have been calibrated for, but underrepresent long spells and interannual variability. Long-term temperature trends of the driving model are essentially unchanged by bias correction methods. If precipitation trends are not well simulated by the driving model, bias correction further deteriorates these trends. The performance of PP methods to simulate trends depends strongly on the chosen predictors.
Název v anglickém jazyce
The VALUE perfect predictor experiment: evaluation of temporal variability
Popis výsledku anglicky
Temporal variability is an important feature of climate, comprising systematic variations such as the annual cycle, as well as residual temporal variations such as short-term variations, spells and variability from interannual to long-term trends. The EU-COST Action VALUE developed a comprehensive framework to evaluate downscaling methods. Here we present the evaluation of the perfect predictor experiment for temporal variability. Overall, the behaviour of the different approaches turned out to be as expected from their structure and implementation. The chosen regional climate model adds value to reanalysis data for most considered aspects, for all seasons and for both temperature and precipitation. Bias correction methods do not directly modify temporal variability apart from the annual cycle. However, wet day corrections substantially improve transition probabilities and spell length distributions, whereas interannual variability is in some cases deteriorated by quantile mapping. The performance of perfect prognosis (PP) statistical downscaling methods varies strongly from aspect to aspect and method to method, and depends strongly on the predictor choice. Unconditional weather generators tend to perform well for the aspects they have been calibrated for, but underrepresent long spells and interannual variability. Long-term temperature trends of the driving model are essentially unchanged by bias correction methods. If precipitation trends are not well simulated by the driving model, bias correction further deteriorates these trends. The performance of PP methods to simulate trends depends strongly on the chosen predictors.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10510 - Climatic research
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Climatology
ISSN
0899-8418
e-ISSN
—
Svazek periodika
39
Číslo periodika v rámci svazku
9 Special Issue
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
33
Strana od-do
3786-3818
Kód UT WoS článku
000474001900007
EID výsledku v databázi Scopus
2-s2.0-85068558152