How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F20%3A00559271" target="_blank" >RIV/68378289:_____/20:00559271 - isvavai.cz</a>
Výsledek na webu
<a href="https://iopscience.iop.org/article/10.1088/1742-6596/1623/1/012005/pdf" target="_blank" >https://iopscience.iop.org/article/10.1088/1742-6596/1623/1/012005/pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1088/1742-6596/1623/1/012005" target="_blank" >10.1088/1742-6596/1623/1/012005</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm
Popis výsledku v původním jazyce
We show how an extended period of quiet solar wind conditions contributes to a quiet state of the plasmasphere that expands up to L similar to 5.5, which creates the perfect conditions for wave-particle interactions between the radiation belt electrons and whistler-mode hiss waves. The correlation between the hiss waves and the plasma density is direct with hiss wave power increasing with plasma density, while it was generally assumed that these quantities can be specified independently. Whistler-mode hiss waves pitch angle diffuse and ultimately scatter freshly injected electrons into the atmosphere until the slot region is formed between the inner and outer belt and the outer belt is drastically reduced. In this study, we use and combine Van Allen Probes observations and Fokker-Planck numerical simulations. The Fokker-Planck model uses consistent event-driven pitch angle diffusion coefficients from whistler-mode hiss waves. Observations and simulations allow us to reach a global understanding of the variations in the trapped electron population with time, space, energy, and pitch angle that is based on the existing theory of quasi-linear wave-particle interactions. We show, for instance, the outer beltis pitch-angle homogeneous, which is explained by the event-driven diffusion coefficients that are roughly constant for equatorial pitch angle α0~<60°, E>100 keV, 3.5<L<Lpp~6. The impact of this work is to bring an improved understanding of the belt evolution based on the integration of high quality and highly temporally and spatially resolved measurements that are integrated in modern computations. We also propose the event-driven method as an accurate method (within ×2) to predict the electron flux decay after storms.
Název v anglickém jazyce
How whistler mode hiss waves and the plasmasphere drive the quiet decay of radiation belts electrons following a geomagnetic storm
Popis výsledku anglicky
We show how an extended period of quiet solar wind conditions contributes to a quiet state of the plasmasphere that expands up to L similar to 5.5, which creates the perfect conditions for wave-particle interactions between the radiation belt electrons and whistler-mode hiss waves. The correlation between the hiss waves and the plasma density is direct with hiss wave power increasing with plasma density, while it was generally assumed that these quantities can be specified independently. Whistler-mode hiss waves pitch angle diffuse and ultimately scatter freshly injected electrons into the atmosphere until the slot region is formed between the inner and outer belt and the outer belt is drastically reduced. In this study, we use and combine Van Allen Probes observations and Fokker-Planck numerical simulations. The Fokker-Planck model uses consistent event-driven pitch angle diffusion coefficients from whistler-mode hiss waves. Observations and simulations allow us to reach a global understanding of the variations in the trapped electron population with time, space, energy, and pitch angle that is based on the existing theory of quasi-linear wave-particle interactions. We show, for instance, the outer beltis pitch-angle homogeneous, which is explained by the event-driven diffusion coefficients that are roughly constant for equatorial pitch angle α0~<60°, E>100 keV, 3.5<L<Lpp~6. The impact of this work is to bring an improved understanding of the belt evolution based on the integration of high quality and highly temporally and spatially resolved measurements that are integrated in modern computations. We also propose the event-driven method as an accurate method (within ×2) to predict the electron flux decay after storms.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Journal of Physics: Conference Series
ISBN
—
ISSN
1742-6588
e-ISSN
1742-6596
Počet stran výsledku
11
Strana od-do
012005
Název nakladatele
IOP Publishing
Místo vydání
Bristol
Místo konání akce
Paris
Datum konání akce
1. 7. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000630893100005