Scattering by whistler-mode waves during a quiet period perturbed by substorm activity
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00541808" target="_blank" >RIV/68378289:_____/21:00541808 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S1364682620302741" target="_blank" >https://www.sciencedirect.com/science/article/pii/S1364682620302741</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jastp.2020.105471" target="_blank" >10.1016/j.jastp.2020.105471</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Scattering by whistler-mode waves during a quiet period perturbed by substorm activity
Popis výsledku v původním jazyce
We study the dynamics of radiation belt electrons during a 10-day quiet period perturbed by substorm activity and preceding a high-speed stream (HSS), aiming at a global description of the radiation belts in L-shell, L in [2, 6], and energy [0.1, 10] MeV. We combine Van Allen Probes observations and Fokker-Planck numerical simulations of pitch-angle diffusion. The Fokker-Planck model uses event-driven pitch angle diffusion coefficients from whistler-mode waves, built from the wave properties and the ambient plasma density measurements from the Van Allen Probes. We first find this event has some similar characteristics to regular quiet times previously studied: a widely extended plasmasphere within which we observe strong and varying whistler-mode waves. These ambient conditions lead to strong pitch-angle scattering, which contributes to the creation of a wide slot region as well as a significant decay of the outer radiation belts, which are observed and qualitatively well simulated. In addition, we find the substorm activity causes short duration (within ? 4h) decay of the plasma density and a lowering amplitude of the whistler-mode waves within the plasmasphere, both causing opposite effects in terms of pitch angle diffusion. This leads to a diminution of pitch-angle diffusion at the time of the main substorm activity. Conversely, whistler-mode waves become enhanced in the time periods between the substorm injections. All effects cumulated, we find an enhancement of pitch angle diffusion by whistler-mode waves above L-4.7 during the 10-day period. This directly relates to the combination of quietness and substorm activity which allows pitch angle diffusing of up to 1 MeV electrons in the outer belt. Relativistic electrons of 1?2 MeV remain trapped in the outer belt, from L-4.7 to L-5.2, forming, in both the observations and the simulations, a distinct pocket of remnant electrons.
Název v anglickém jazyce
Scattering by whistler-mode waves during a quiet period perturbed by substorm activity
Popis výsledku anglicky
We study the dynamics of radiation belt electrons during a 10-day quiet period perturbed by substorm activity and preceding a high-speed stream (HSS), aiming at a global description of the radiation belts in L-shell, L in [2, 6], and energy [0.1, 10] MeV. We combine Van Allen Probes observations and Fokker-Planck numerical simulations of pitch-angle diffusion. The Fokker-Planck model uses event-driven pitch angle diffusion coefficients from whistler-mode waves, built from the wave properties and the ambient plasma density measurements from the Van Allen Probes. We first find this event has some similar characteristics to regular quiet times previously studied: a widely extended plasmasphere within which we observe strong and varying whistler-mode waves. These ambient conditions lead to strong pitch-angle scattering, which contributes to the creation of a wide slot region as well as a significant decay of the outer radiation belts, which are observed and qualitatively well simulated. In addition, we find the substorm activity causes short duration (within ? 4h) decay of the plasma density and a lowering amplitude of the whistler-mode waves within the plasmasphere, both causing opposite effects in terms of pitch angle diffusion. This leads to a diminution of pitch-angle diffusion at the time of the main substorm activity. Conversely, whistler-mode waves become enhanced in the time periods between the substorm injections. All effects cumulated, we find an enhancement of pitch angle diffusion by whistler-mode waves above L-4.7 during the 10-day period. This directly relates to the combination of quietness and substorm activity which allows pitch angle diffusing of up to 1 MeV electrons in the outer belt. Relativistic electrons of 1?2 MeV remain trapped in the outer belt, from L-4.7 to L-5.2, forming, in both the observations and the simulations, a distinct pocket of remnant electrons.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10305 - Fluids and plasma physics (including surface physics)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Atmospheric and Solar-Terrestrial Physics
ISSN
1364-6826
e-ISSN
1879-1824
Svazek periodika
215
Číslo periodika v rámci svazku
April
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
105471
Kód UT WoS článku
000633030300001
EID výsledku v databázi Scopus
2-s2.0-85101393206