Testing for Trends on a Regional Scale: Beyond Local Significance
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378289%3A_____%2F21%3A00556716" target="_blank" >RIV/68378289:_____/21:00556716 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/00216208:11310/21:10433548 RIV/86652079:_____/21:00603924
Výsledek na webu
<a href="https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-19-0960.1/JCLI-D-19-0960.1.xml" target="_blank" >https://journals.ametsoc.org/view/journals/clim/aop/JCLI-D-19-0960.1/JCLI-D-19-0960.1.xml</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1175/JCLI-D-19-0960.1" target="_blank" >10.1175/JCLI-D-19-0960.1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Testing for Trends on a Regional Scale: Beyond Local Significance
Popis výsledku v původním jazyce
Studies detecting trends in climate elements typically concentrate on their local significance, ignoring the question of whether the significant local trends may or may not have occurred as a result of chance. This paper fills this gap by examining several approaches to detecting statistical significance of trends defined on a grid (i.e., on a regional scale). To this end, we introduce a novel simple procedure of significance testing that is based on counting signs of local trends (sign test), and we compare it with five other approaches to testing collective significance of trends: counting, extended Mann-Kendall, Walker, false detection rate (FDR), and regression tests. Synthetic data are used to construct null distributions of trend statistics, to determine critical values of the tests, and to assess the performance of tests in terms of type-II error. For lower values of spatial and temporal autocorrelations, the sign test and extended Mann-Kendall test perform slightly better than the counting test: these three tests outperform the Walker, FDR, and regression tests by a wide margin. For high autocorrelations, which is a more realistic case, all tests become similar in their performance, with the exception of the regression test, which performs somewhat worse. Some tests cannot be used under specific conditions because of their construction: the Walker and FDR tests for high temporal autocorrelations, and the sign test under high spatial autocorrelations.
Název v anglickém jazyce
Testing for Trends on a Regional Scale: Beyond Local Significance
Popis výsledku anglicky
Studies detecting trends in climate elements typically concentrate on their local significance, ignoring the question of whether the significant local trends may or may not have occurred as a result of chance. This paper fills this gap by examining several approaches to detecting statistical significance of trends defined on a grid (i.e., on a regional scale). To this end, we introduce a novel simple procedure of significance testing that is based on counting signs of local trends (sign test), and we compare it with five other approaches to testing collective significance of trends: counting, extended Mann-Kendall, Walker, false detection rate (FDR), and regression tests. Synthetic data are used to construct null distributions of trend statistics, to determine critical values of the tests, and to assess the performance of tests in terms of type-II error. For lower values of spatial and temporal autocorrelations, the sign test and extended Mann-Kendall test perform slightly better than the counting test: these three tests outperform the Walker, FDR, and regression tests by a wide margin. For high autocorrelations, which is a more realistic case, all tests become similar in their performance, with the exception of the regression test, which performs somewhat worse. Some tests cannot be used under specific conditions because of their construction: the Walker and FDR tests for high temporal autocorrelations, and the sign test under high spatial autocorrelations.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10509 - Meteorology and atmospheric sciences
Návaznosti výsledku
Projekt
<a href="/cs/project/GA16-04676S" target="_blank" >GA16-04676S: Nové přístupy k určování klimatických trendů a jejich statistické významnosti</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Climate
ISSN
0894-8755
e-ISSN
1520-0442
Svazek periodika
34
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
17
Strana od-do
5349-5365
Kód UT WoS článku
000775651000012
EID výsledku v databázi Scopus
2-s2.0-85106949119