Dynamic Interactions of a Train Moving Over a Rail Suspension Bridge with Multiple Support Settlements
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F11%3A00364231" target="_blank" >RIV/68378297:_____/11:00364231 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dynamic Interactions of a Train Moving Over a Rail Suspension Bridge with Multiple Support Settlements
Popis výsledku v původním jazyce
With the consideration of multiple support settlements, interaction responses of a train running over a rail suspension bridge will be investigated. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, the total deflection response of the suspended beam is divided into two parts: the static component and the dynamic deflection. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are converted into a set of nonlinearly coupled generalized equations by Galerkin?s method, and solved using the Newmark method using incremental-iterative procedure. From the present numerical demonstrations, the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.
Název v anglickém jazyce
Dynamic Interactions of a Train Moving Over a Rail Suspension Bridge with Multiple Support Settlements
Popis výsledku anglicky
With the consideration of multiple support settlements, interaction responses of a train running over a rail suspension bridge will be investigated. The suspension bridge is modeled as a single-span suspended beam with hinged ends and the train as successive moving oscillators with identical properties. To conduct this dynamic problem with non-homogeneous boundary conditions, the total deflection response of the suspended beam is divided into two parts: the static component and the dynamic deflection. Then, the coupled equations of motion for the suspended beam carrying multiple moving oscillators are converted into a set of nonlinearly coupled generalized equations by Galerkin?s method, and solved using the Newmark method using incremental-iterative procedure. From the present numerical demonstrations, the differential movements of bridge supports will significantly affect the dynamic response of the running vehicles but insignificant influence on the bridge response.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2011
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Vibration Problems ICOVP 2011 - Supplement
ISBN
978-80-7372-759-8
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
235-240
Název nakladatele
Technical University of Liberec
Místo vydání
Liberec
Místo konání akce
Praha
Datum konání akce
5. 9. 2011
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—