Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F12%3A00382832" target="_blank" >RIV/68378297:_____/12:00382832 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.jweia.2012.08.002" target="_blank" >http://dx.doi.org/10.1016/j.jweia.2012.08.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jweia.2012.08.002" target="_blank" >10.1016/j.jweia.2012.08.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom
Popis výsledku v původním jazyce
The unified linear variant of the general mathematical description of stability conditions for a girder with a bluff cross-section under the influence of wind flow is presented. A double degree-of-freedom model for the heave and pitch self-excited motionis used. The properties of the response located at the stability limits and the tendencies of the response in their vicinity are analyzed by means of the Routh?Hurwitz theorem. The respective stability conditions are depicted in the frequency plane delimited by the frequencies of two principal aero-elastic modes. Conditions for flutter onset and divergence are identified as special cases of the general theory. The results can be used as an explanation of several experimentally observed effects. The application of this method to real bridges is presented and compared with existing results from other approaches.
Název v anglickém jazyce
Response types and general stability conditions of linear aero-elastic system with two degrees-of-freedom
Popis výsledku anglicky
The unified linear variant of the general mathematical description of stability conditions for a girder with a bluff cross-section under the influence of wind flow is presented. A double degree-of-freedom model for the heave and pitch self-excited motionis used. The properties of the response located at the stability limits and the tendencies of the response in their vicinity are analyzed by means of the Routh?Hurwitz theorem. The respective stability conditions are depicted in the frequency plane delimited by the frequencies of two principal aero-elastic modes. Conditions for flutter onset and divergence are identified as special cases of the general theory. The results can be used as an explanation of several experimentally observed effects. The application of this method to real bridges is presented and compared with existing results from other approaches.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Wind Engineering and Industrial Aerodynamics
ISSN
0167-6105
e-ISSN
—
Svazek periodika
111
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
13
Strana od-do
1-13
Kód UT WoS článku
000312354600001
EID výsledku v databázi Scopus
—