Static and dynamic analysis of beam assemblies using a differential system on an oriented graph
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F15%3A00444693" target="_blank" >RIV/68378297:_____/15:00444693 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0045794915000590#" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0045794915000590#</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2015.02.021" target="_blank" >10.1016/j.compstruc.2015.02.021</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Static and dynamic analysis of beam assemblies using a differential system on an oriented graph
Popis výsledku v původním jazyce
Many systems in engineering, theoretical physics and other domains of natural sciences can be investigated using a linear mathematical model having the character of a differential system defined within a given network. This network may consist of one-dimensional elements characterised by local coordinate systems. These elements (recti- or curvilinear) are interconnected at nodes, through which energy, mass and stiffness properties of the elements are transmitted as a function of time. The system as a whole is generally determined by some boundary conditions or assumed to be interconnected with other subsystems. Elements of the system are considered to have continuously distributed parameters (mass, stiffness, conductivity, etc.). External energy may besupplied through boundary conditions or by excitation of elements at nodes. The problem of the system?s response, or a relevant eigenvalue problem, can be understood as a problem of a differential system on an oriented graph. This graph
Název v anglickém jazyce
Static and dynamic analysis of beam assemblies using a differential system on an oriented graph
Popis výsledku anglicky
Many systems in engineering, theoretical physics and other domains of natural sciences can be investigated using a linear mathematical model having the character of a differential system defined within a given network. This network may consist of one-dimensional elements characterised by local coordinate systems. These elements (recti- or curvilinear) are interconnected at nodes, through which energy, mass and stiffness properties of the elements are transmitted as a function of time. The system as a whole is generally determined by some boundary conditions or assumed to be interconnected with other subsystems. Elements of the system are considered to have continuously distributed parameters (mass, stiffness, conductivity, etc.). External energy may besupplied through boundary conditions or by excitation of elements at nodes. The problem of the system?s response, or a relevant eigenvalue problem, can be understood as a problem of a differential system on an oriented graph. This graph
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-01035S" target="_blank" >GA15-01035S: Dynamická stabilita a post-kritické procesy v nekonzervativních a neholonomních stochastických soustavách s interakcemi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Structures
ISSN
0045-7949
e-ISSN
—
Svazek periodika
155
Číslo periodika v rámci svazku
July
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
14
Strana od-do
—
Kód UT WoS článku
000356738400004
EID výsledku v databázi Scopus
2-s2.0-84930373647