Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F17%3A00465280" target="_blank" >RIV/68378297:_____/17:00465280 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://www.sciencedirect.com/science/article/pii/S0045794916310495" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0045794916310495</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compstruc.2016.10.015" target="_blank" >10.1016/j.compstruc.2016.10.015</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations

  • Popis výsledku v původním jazyce

    The aim of this study is an alternative approach to structure response or modal analysis. The structure consists of one-dimensional bars with continuously distributed mass and stiffness. The analysis is considered on an abstract basis as a problem of a differential system on an oriented graph. This graph is a geometric representation of the investigated mechanical system, where elements of the graph are individual bars of the system, recti- or curvilinear. The system as a whole is fixed through boundary conditions or interconnected with other sub-systems. Hence the paper can be taken as a follow up to earlier works presented at the CC2013 and CST2014 Conferences, where full mathematical background dealing with a general problem has been discussed. This paper is focused on the problem of dynamics of a system with straight prismatic bars with uniformly distributed mass. Dissipation of energy is omitted in order to keep the formulation in the real domain. The detailed assembly procedure of the Dynamic Stiffness Matrix (DSM) and transformation from local to global coordinates is outlined and demonstrated. Conventional way of eigenvalue searching by means of discrete alternative of the Newton-Raphson method is sketched out and later two possibilities based on polynomial and hyperbolic approximations of the DSM elements are pointed out. Lambda matrices as a tool are introduced together with a couple of application possibilities. The Wittrick-Williams algorithm is discussed and applied to localize and facilitate the eigenvalues searching on the whole frequency interval investigated. Finally, an illustrative example of the eigenvalue analysis of a structure is included. Strengths and shortcomings of the approach are discussed. Some open problems and orientation of further investigation are briefly outlined.

  • Název v anglickém jazyce

    Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations

  • Popis výsledku anglicky

    The aim of this study is an alternative approach to structure response or modal analysis. The structure consists of one-dimensional bars with continuously distributed mass and stiffness. The analysis is considered on an abstract basis as a problem of a differential system on an oriented graph. This graph is a geometric representation of the investigated mechanical system, where elements of the graph are individual bars of the system, recti- or curvilinear. The system as a whole is fixed through boundary conditions or interconnected with other sub-systems. Hence the paper can be taken as a follow up to earlier works presented at the CC2013 and CST2014 Conferences, where full mathematical background dealing with a general problem has been discussed. This paper is focused on the problem of dynamics of a system with straight prismatic bars with uniformly distributed mass. Dissipation of energy is omitted in order to keep the formulation in the real domain. The detailed assembly procedure of the Dynamic Stiffness Matrix (DSM) and transformation from local to global coordinates is outlined and demonstrated. Conventional way of eigenvalue searching by means of discrete alternative of the Newton-Raphson method is sketched out and later two possibilities based on polynomial and hyperbolic approximations of the DSM elements are pointed out. Lambda matrices as a tool are introduced together with a couple of application possibilities. The Wittrick-Williams algorithm is discussed and applied to localize and facilitate the eigenvalues searching on the whole frequency interval investigated. Finally, an illustrative example of the eigenvalue analysis of a structure is included. Strengths and shortcomings of the approach are discussed. Some open problems and orientation of further investigation are briefly outlined.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20102 - Construction engineering, Municipal and structural engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-01035S" target="_blank" >GA15-01035S: Dynamická stabilita a post-kritické procesy v nekonzervativních a neholonomních stochastických soustavách s interakcemi</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computers and Structures

  • ISSN

    0045-7949

  • e-ISSN

  • Svazek periodika

    180

  • Číslo periodika v rámci svazku

    February

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    10

  • Strana od-do

    3-12

  • Kód UT WoS článku

    000393526800002

  • EID výsledku v databázi Scopus

    2-s2.0-85006054037