Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F17%3A00465280" target="_blank" >RIV/68378297:_____/17:00465280 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0045794916310495" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0045794916310495</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.compstruc.2016.10.015" target="_blank" >10.1016/j.compstruc.2016.10.015</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations
Popis výsledku v původním jazyce
The aim of this study is an alternative approach to structure response or modal analysis. The structure consists of one-dimensional bars with continuously distributed mass and stiffness. The analysis is considered on an abstract basis as a problem of a differential system on an oriented graph. This graph is a geometric representation of the investigated mechanical system, where elements of the graph are individual bars of the system, recti- or curvilinear. The system as a whole is fixed through boundary conditions or interconnected with other sub-systems. Hence the paper can be taken as a follow up to earlier works presented at the CC2013 and CST2014 Conferences, where full mathematical background dealing with a general problem has been discussed. This paper is focused on the problem of dynamics of a system with straight prismatic bars with uniformly distributed mass. Dissipation of energy is omitted in order to keep the formulation in the real domain. The detailed assembly procedure of the Dynamic Stiffness Matrix (DSM) and transformation from local to global coordinates is outlined and demonstrated. Conventional way of eigenvalue searching by means of discrete alternative of the Newton-Raphson method is sketched out and later two possibilities based on polynomial and hyperbolic approximations of the DSM elements are pointed out. Lambda matrices as a tool are introduced together with a couple of application possibilities. The Wittrick-Williams algorithm is discussed and applied to localize and facilitate the eigenvalues searching on the whole frequency interval investigated. Finally, an illustrative example of the eigenvalue analysis of a structure is included. Strengths and shortcomings of the approach are discussed. Some open problems and orientation of further investigation are briefly outlined.
Název v anglickém jazyce
Investigation of bar system modal characteristics using Dynamic Stiffness Matrix polynomial approximations
Popis výsledku anglicky
The aim of this study is an alternative approach to structure response or modal analysis. The structure consists of one-dimensional bars with continuously distributed mass and stiffness. The analysis is considered on an abstract basis as a problem of a differential system on an oriented graph. This graph is a geometric representation of the investigated mechanical system, where elements of the graph are individual bars of the system, recti- or curvilinear. The system as a whole is fixed through boundary conditions or interconnected with other sub-systems. Hence the paper can be taken as a follow up to earlier works presented at the CC2013 and CST2014 Conferences, where full mathematical background dealing with a general problem has been discussed. This paper is focused on the problem of dynamics of a system with straight prismatic bars with uniformly distributed mass. Dissipation of energy is omitted in order to keep the formulation in the real domain. The detailed assembly procedure of the Dynamic Stiffness Matrix (DSM) and transformation from local to global coordinates is outlined and demonstrated. Conventional way of eigenvalue searching by means of discrete alternative of the Newton-Raphson method is sketched out and later two possibilities based on polynomial and hyperbolic approximations of the DSM elements are pointed out. Lambda matrices as a tool are introduced together with a couple of application possibilities. The Wittrick-Williams algorithm is discussed and applied to localize and facilitate the eigenvalues searching on the whole frequency interval investigated. Finally, an illustrative example of the eigenvalue analysis of a structure is included. Strengths and shortcomings of the approach are discussed. Some open problems and orientation of further investigation are briefly outlined.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA15-01035S" target="_blank" >GA15-01035S: Dynamická stabilita a post-kritické procesy v nekonzervativních a neholonomních stochastických soustavách s interakcemi</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computers and Structures
ISSN
0045-7949
e-ISSN
—
Svazek periodika
180
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
10
Strana od-do
3-12
Kód UT WoS článku
000393526800002
EID výsledku v databázi Scopus
2-s2.0-85006054037