Strain-rate dependence for Ni/Al hybrid foams
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F15%3A00464796" target="_blank" >RIV/68378297:_____/15:00464796 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.epj-conferences.org/articles/epjconf/pdf/2015/13/epjconf-dymat2015_04030.pdf" target="_blank" >http://www.epj-conferences.org/articles/epjconf/pdf/2015/13/epjconf-dymat2015_04030.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1051/epjconf/20159404030" target="_blank" >10.1051/epjconf/20159404030</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Strain-rate dependence for Ni/Al hybrid foams
Popis výsledku v původním jazyce
Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposi lion as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure clue to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (mu CT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests
Název v anglickém jazyce
Strain-rate dependence for Ni/Al hybrid foams
Popis výsledku anglicky
Shock absorption often needs stiff but lightweight materials that exhibit a large kinetic energy absorption capability. Open-cell metal foams are artificial structures, which due to their plateau stress, including a strong hysteresis, can in principle absorb large amounts of energy. However, their plateau stress is too low for many applications. In this study, we use highly novel and promising Ni/Al hybrid foams which consist of standard, open-cell aluminium foams, where nanocrystalline nickel is deposited by electrodeposi lion as coating on the strut surface. The mechanical behaviour of cellular materials, including their behaviour under higher strain-rates, is governed by their microstructure clue to the properties of the strut material, pore/strut geometry and mass distribution over the struts. Micro-inertia effects are strongly related to the microstructure. For a conclusive model, the exact real microstructure is needed. In this study a micro-focus computer tomography (mu CT) system has been used for the analysis of the microstructure of the foam samples and for the development of a microstructural Finite Element (micro-FE) mesh. The microstructural FE models have been used to model the mechanical behaviour of the Ni/Al hybrid foams under dynamic loading conditions. The simulations are validated by quasi-static compression tests and dynamic split Hopkinson pressure bar tests
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
11th International conference on the mechanical and physical behaviour of materials under dynamic loading, DYMAT 2015
ISBN
978-2-7598-1817-4
ISSN
2101-6275
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
EDP Sciences
Místo vydání
Paris
Místo konání akce
Lugano
Datum konání akce
7. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000372587700142