Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21260%2F21%3A00372778" target="_blank" >RIV/68407700:21260/21:00372778 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1002/adem.202001393" target="_blank" >https://doi.org/10.1002/adem.202001393</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/adem.202001393" target="_blank" >10.1002/adem.202001393</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization
Popis výsledku v původním jazyce
With their increased energy absorption capacity, auxetic materials are perfectly fit to develop new, enhanced lightweight crash absorbers for cars. Herein, the mass distribution along the struts is optimized via finite element analysis with a parameterized optimization. Four different auxetic unit cells are taken from the literature and their struts parameterize, the models simulate, and the mass specific energy absorption capacity optimizes. The two models with the highest energy absorption capacity are then selected for experimental investigation and produced by additive manufacturing from a polymer. To further enhance the mechanical properties, the specimens are electrochemically coated with nickel and the polymer molten out by pyrolysis. Those Ni/polymer hybrids are subjected to quasistatic and dynamic impact experiments. Only a small strain rate sensitivity can be detected under dynamic loading, namely, a higher plastic collapse and higher plateau stress. The hollow struts are folding instead of bending, which render them much weaker than predicted by the simulation. In conclusion, it is possible to improve existing crash absorber elements with tailored auxetic hybrid structures. They absorb higher amounts of energy without changing their stiffness under dynamic loading while saving mass and cost.
Název v anglickém jazyce
Hybrid Auxetic Structures: Structural Optimization and Mechanical Characterization
Popis výsledku anglicky
With their increased energy absorption capacity, auxetic materials are perfectly fit to develop new, enhanced lightweight crash absorbers for cars. Herein, the mass distribution along the struts is optimized via finite element analysis with a parameterized optimization. Four different auxetic unit cells are taken from the literature and their struts parameterize, the models simulate, and the mass specific energy absorption capacity optimizes. The two models with the highest energy absorption capacity are then selected for experimental investigation and produced by additive manufacturing from a polymer. To further enhance the mechanical properties, the specimens are electrochemically coated with nickel and the polymer molten out by pyrolysis. Those Ni/polymer hybrids are subjected to quasistatic and dynamic impact experiments. Only a small strain rate sensitivity can be detected under dynamic loading, namely, a higher plastic collapse and higher plateau stress. The hollow struts are folding instead of bending, which render them much weaker than predicted by the simulation. In conclusion, it is possible to improve existing crash absorber elements with tailored auxetic hybrid structures. They absorb higher amounts of energy without changing their stiffness under dynamic loading while saving mass and cost.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GA19-23675S" target="_blank" >GA19-23675S: Moderní numerické a experimentální modelování inovativních sendvičových panelů s buněčným jádrem</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Engineering Materials
ISSN
1438-1656
e-ISSN
1527-2648
Svazek periodika
23
Číslo periodika v rámci svazku
5
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
15
Strana od-do
1-15
Kód UT WoS článku
000619173500001
EID výsledku v databázi Scopus
2-s2.0-85100905455