Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F18%3A00482301" target="_blank" >RIV/68378297:_____/18:00482301 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cemconres.2017.10.002" target="_blank" >https://doi.org/10.1016/j.cemconres.2017.10.002</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cemconres.2017.10.002" target="_blank" >10.1016/j.cemconres.2017.10.002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model
Popis výsledku v původním jazyce
Ever since the early days of Féret (1892) and Abrams (1919), concrete research has targeted at relating concrete composition to uniaxial compressive strength. While these activities were mainly characterized by empirical fitting functions, we here take a more fundamental approach based on continuum micromechanics. The loading applied at the concrete level, is first concentrated (“downscaled”) to maximum stresses related to cement paste volumes which are directly adjacent to the aggregates, i.e. to the interfacial transition zones (ITZ). These maximum stresses are further “downscaled” to the micron-sized hydrates, in terms of higher-order stress averages. The latter enter a Drucker-Prager failure criterion with material constants derived from nanoindentation tests. The model is successfully validated across the hydrate-to-concrete scales. Strength magnitude is governed by ITZ stress concentrations, and the water-to-cement ratio is its dominant mixture design parameter.
Název v anglickém jazyce
Hydrate failure in ITZ governs concrete strength: A micro-to-macro validated engineering mechanics model
Popis výsledku anglicky
Ever since the early days of Féret (1892) and Abrams (1919), concrete research has targeted at relating concrete composition to uniaxial compressive strength. While these activities were mainly characterized by empirical fitting functions, we here take a more fundamental approach based on continuum micromechanics. The loading applied at the concrete level, is first concentrated (“downscaled”) to maximum stresses related to cement paste volumes which are directly adjacent to the aggregates, i.e. to the interfacial transition zones (ITZ). These maximum stresses are further “downscaled” to the micron-sized hydrates, in terms of higher-order stress averages. The latter enter a Drucker-Prager failure criterion with material constants derived from nanoindentation tests. The model is successfully validated across the hydrate-to-concrete scales. Strength magnitude is governed by ITZ stress concentrations, and the water-to-cement ratio is its dominant mixture design parameter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Cement and Concrete Research
ISSN
0008-8846
e-ISSN
—
Svazek periodika
103
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
18
Strana od-do
77-94
Kód UT WoS článku
000423245700006
EID výsledku v databázi Scopus
2-s2.0-85033576675