Early-age evolution of compressive strength of cement pastes, mortars, and concretes: a validated engineering mechanical model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F18%3A00495381" target="_blank" >RIV/68378297:_____/18:00495381 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Early-age evolution of compressive strength of cement pastes, mortars, and concretes: a validated engineering mechanical model
Popis výsledku v původním jazyce
Since the pioneering developments of Féret (1892) and Abrams (1919), cement and concrete research has aimed at relating the composition and maturity of cementitious material to their uniaxial compressive strength. These research activities were mainly related to the development of empirical fitting functions. Herein, a more fundamental approach based on continuum micromechanics is presented [1]. The macroscopic loading applied onto a specimen of concrete or mortar, is first translated into stress peaks related to cement paste volumes located in the interfacial transition zones (ITZ) around the aggregates. These stress states are further translated into stress peaks related to microscopic hydrate needles, based on second-order stress averages. These effective stresses of the hydrate needles enter a Drucker-Prager failure criterion with material constants quantified based on nanoindentation tests into low-density calcium-silicate-hydrates. Predictions of the engineering mechanics model agree well with macroscopic strength measurements referring to the material scales of cement pastes, mortars, and concretes.
Název v anglickém jazyce
Early-age evolution of compressive strength of cement pastes, mortars, and concretes: a validated engineering mechanical model
Popis výsledku anglicky
Since the pioneering developments of Féret (1892) and Abrams (1919), cement and concrete research has aimed at relating the composition and maturity of cementitious material to their uniaxial compressive strength. These research activities were mainly related to the development of empirical fitting functions. Herein, a more fundamental approach based on continuum micromechanics is presented [1]. The macroscopic loading applied onto a specimen of concrete or mortar, is first translated into stress peaks related to cement paste volumes located in the interfacial transition zones (ITZ) around the aggregates. These stress states are further translated into stress peaks related to microscopic hydrate needles, based on second-order stress averages. These effective stresses of the hydrate needles enter a Drucker-Prager failure criterion with material constants quantified based on nanoindentation tests into low-density calcium-silicate-hydrates. Predictions of the engineering mechanics model agree well with macroscopic strength measurements referring to the material scales of cement pastes, mortars, and concretes.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů