Maximum entropy probability density principle in probabilistic investigations of dynamic systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F18%3A00494588" target="_blank" >RIV/68378297:_____/18:00494588 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.3390/e20100790" target="_blank" >https://doi.org/10.3390/e20100790</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/e20100790" target="_blank" >10.3390/e20100790</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Maximum entropy probability density principle in probabilistic investigations of dynamic systems
Popis výsledku v původním jazyce
In this study, we consider a method for investigating the stochastic response of a nonlinear dynamical system affected by a random seismic process. We present the solution of the probability density of a single/multiple-degree of freedom (SDOF/MDOF) system with several statically stable equilibrium states and with possible jumps of the snap-through type. The system is a Hamiltonian system with weak damping excited by a system of non-stationary Gaussian white noise. The solution based on the Gibbs principle of the maximum entropy of probability could potentially be implemented in various branches of engineering. The search for the extreme of the Gibbs entropy functional is formulated as a constrained optimization problem. The secondary constraints follow from the Fokker–Planck equation (FPE) for the system considered or from the system of ordinary differential equations for the stochastic moments of the response derived from the relevant FPE. In terms of the application type, this strategy is most suitable for SDOF/MDOF systems containing polynomial type nonlinearities. Thus, the solution links up with the customary formulation of the finite elements discretization for strongly nonlinear continuous systems.
Název v anglickém jazyce
Maximum entropy probability density principle in probabilistic investigations of dynamic systems
Popis výsledku anglicky
In this study, we consider a method for investigating the stochastic response of a nonlinear dynamical system affected by a random seismic process. We present the solution of the probability density of a single/multiple-degree of freedom (SDOF/MDOF) system with several statically stable equilibrium states and with possible jumps of the snap-through type. The system is a Hamiltonian system with weak damping excited by a system of non-stationary Gaussian white noise. The solution based on the Gibbs principle of the maximum entropy of probability could potentially be implemented in various branches of engineering. The search for the extreme of the Gibbs entropy functional is formulated as a constrained optimization problem. The secondary constraints follow from the Fokker–Planck equation (FPE) for the system considered or from the system of ordinary differential equations for the stochastic moments of the response derived from the relevant FPE. In terms of the application type, this strategy is most suitable for SDOF/MDOF systems containing polynomial type nonlinearities. Thus, the solution links up with the customary formulation of the finite elements discretization for strongly nonlinear continuous systems.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-26353J" target="_blank" >GC17-26353J: Teoretické prediktivní modely interakce proměnného a pohyblivého zatížení využitelné v monitoringu mostních konstrukcí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Entropy
ISSN
1099-4300
e-ISSN
—
Svazek periodika
20
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
23
Strana od-do
—
Kód UT WoS článku
000448545700071
EID výsledku v databázi Scopus
2-s2.0-85055711351