Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F20%3A00523725" target="_blank" >RIV/68378297:_____/20:00523725 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/s11071-019-04948-0" target="_blank" >https://doi.org/10.1007/s11071-019-04948-0</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-019-04948-0" target="_blank" >10.1007/s11071-019-04948-0</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system
Popis výsledku v původním jazyce
The aim of the study is to demonstrate a couple of special states which can be encountered at the system of a ball moving in a spherical cavity working as a passive tuned mass damper (TMD) of slender engineering structures. The system includes six degrees of freedom with three non-holonomic constraints being under horizontal additive kinematic excitation. The Appell–Gibbs approach is used to deduce the governing differential system. Uniaxial and biaxial types of kinematic excitation are considered. Among biaxial, a special attention is paid to circular setting. Influence of the rolling and spinning damping in contact of the ball with cavity is discussed. Under uniaxial excitation is the system auto-parametric and posses multiple solutions. The individual response branches can be identified when the excitation frequency is swept up or down with respect to setting up of initial conditions. Among stable branches reveal those with very low and sometimes zero approaching stability level. Although the accessibility of relevant trajectories is often very subtle due to effect of the dynamic stability, these post-critical phenomena accumulate a lot of energy.Hence, they can be very dangerous for TMD and other important engineering systems. Some general recommendations for practice are formulated.
Název v anglickém jazyce
Stable and unstable solutions in auto-parametric resonance zone of a non-holonomic system
Popis výsledku anglicky
The aim of the study is to demonstrate a couple of special states which can be encountered at the system of a ball moving in a spherical cavity working as a passive tuned mass damper (TMD) of slender engineering structures. The system includes six degrees of freedom with three non-holonomic constraints being under horizontal additive kinematic excitation. The Appell–Gibbs approach is used to deduce the governing differential system. Uniaxial and biaxial types of kinematic excitation are considered. Among biaxial, a special attention is paid to circular setting. Influence of the rolling and spinning damping in contact of the ball with cavity is discussed. Under uniaxial excitation is the system auto-parametric and posses multiple solutions. The individual response branches can be identified when the excitation frequency is swept up or down with respect to setting up of initial conditions. Among stable branches reveal those with very low and sometimes zero approaching stability level. Although the accessibility of relevant trajectories is often very subtle due to effect of the dynamic stability, these post-critical phenomena accumulate a lot of energy.Hence, they can be very dangerous for TMD and other important engineering systems. Some general recommendations for practice are formulated.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GC17-26353J" target="_blank" >GC17-26353J: Teoretické prediktivní modely interakce proměnného a pohyblivého zatížení využitelné v monitoringu mostních konstrukcí</a><br>
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Nonlinear Dynamics
ISSN
0924-090X
e-ISSN
—
Svazek periodika
99
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
14
Strana od-do
299-312
Kód UT WoS článku
000508426900017
EID výsledku v databázi Scopus
2-s2.0-85068207648