Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68378297%3A_____%2F21%3A00546147" target="_blank" >RIV/68378297:_____/21:00546147 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1007/s11071-021-06709-4" target="_blank" >https://doi.org/10.1007/s11071-021-06709-4</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/s11071-021-06709-4" target="_blank" >10.1007/s11071-021-06709-4</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system

  • Popis výsledku v původním jazyce

    Analytical study of ball vibration absorber behavior is presented in the paper. The dynamics of trajectories of a heavy ball moving without slipping inside a spherical cavity are analyzed. Following our previous work, where a similar system was investigated through various numerical simulations, research of the dynamic properties of a sphere moving in a spherical cavity was carried out by methods of analytical dynamics. The strategy of analytical investigation enabled definition of a set of special and limit cases which designate individual domains of regular trajectories. In order to avoid any mutual interaction between the domains along a particular trajectory movement, energy dissipation at the contact of the ball and the cavity has been ignored, as has any kinematic excitation due to cavity movement. A governing system was derived using the Lagrangian formalism and complemented by appropriate non-holonomic constraints of the Pfaff type. The three first integrals are defined, enabling the evaluation of trajectory types with respect to system parameters, the initial amount of total energy, the angular momentum of the ball and its initial spin velocity. The neighborhoods of the limit trajectories and their dynamic stability are assessed. Limit and transition special cases are investigated along with their individual elements. The analytical means of investigation enabled the performance of broad parametric studies. Good agreement was found when comparing the results achieved by the analytical procedures in this paper with those obtained by means of numerical simulations, as they followed from the Lagrangian approach and the Appell–Gibbs function presented in previous papers.

  • Název v anglickém jazyce

    Trajectories of a ball moving inside a spherical cavity using first integrals of the governing nonlinear system

  • Popis výsledku anglicky

    Analytical study of ball vibration absorber behavior is presented in the paper. The dynamics of trajectories of a heavy ball moving without slipping inside a spherical cavity are analyzed. Following our previous work, where a similar system was investigated through various numerical simulations, research of the dynamic properties of a sphere moving in a spherical cavity was carried out by methods of analytical dynamics. The strategy of analytical investigation enabled definition of a set of special and limit cases which designate individual domains of regular trajectories. In order to avoid any mutual interaction between the domains along a particular trajectory movement, energy dissipation at the contact of the ball and the cavity has been ignored, as has any kinematic excitation due to cavity movement. A governing system was derived using the Lagrangian formalism and complemented by appropriate non-holonomic constraints of the Pfaff type. The three first integrals are defined, enabling the evaluation of trajectory types with respect to system parameters, the initial amount of total energy, the angular momentum of the ball and its initial spin velocity. The neighborhoods of the limit trajectories and their dynamic stability are assessed. Limit and transition special cases are investigated along with their individual elements. The analytical means of investigation enabled the performance of broad parametric studies. Good agreement was found when comparing the results achieved by the analytical procedures in this paper with those obtained by means of numerical simulations, as they followed from the Lagrangian approach and the Appell–Gibbs function presented in previous papers.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA19-21817S" target="_blank" >GA19-21817S: Neholonomní interakce a dynamická stabilita aeroelastických soustav</a><br>

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Nonlinear Dynamics

  • ISSN

    0924-090X

  • e-ISSN

    1573-269X

  • Svazek periodika

    106

  • Číslo periodika v rámci svazku

    3

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    35

  • Strana od-do

    1591-1625

  • Kód UT WoS článku

    000700201100003

  • EID výsledku v databázi Scopus

    2-s2.0-85115435662