Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00194172" target="_blank" >RIV/68407700:21110/12:00194172 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.cam.2012.02.003" target="_blank" >http://dx.doi.org/10.1016/j.cam.2012.02.003</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2012.02.003" target="_blank" >10.1016/j.cam.2012.02.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials
Popis výsledku v původním jazyce
The prediction of thermo-mechanical behaviour of heterogeneous materials such as heat and moisture transport is strongly influenced by the uncertainty in parameters. Such materials occur e.g., in historic buildings, and the durability assessment of thesetherefore needs a reliable and probabilistic simulation of transport processes, which is related to the suitable identification of material parameters. In order to include expert knowledge as well as experimental results, one can employ an updating procedure such as Bayesian inference. The classical probabilistic setting of the identification process in Bayes' form requires the solution of a stochastic forward problem via computationally expensive sampling techniques, which makes the method almost impractical. In this paper novel stochastic computational techniques such as the stochastic Galerkin method are applied in order to accelerate the updating procedure. The idea is to replace the computationally expensive forward simulation via
Název v anglickém jazyce
Acceleration of uncertainty updating in the description of transport processes in heterogeneous materials
Popis výsledku anglicky
The prediction of thermo-mechanical behaviour of heterogeneous materials such as heat and moisture transport is strongly influenced by the uncertainty in parameters. Such materials occur e.g., in historic buildings, and the durability assessment of thesetherefore needs a reliable and probabilistic simulation of transport processes, which is related to the suitable identification of material parameters. In order to include expert knowledge as well as experimental results, one can employ an updating procedure such as Bayesian inference. The classical probabilistic setting of the identification process in Bayes' form requires the solution of a stochastic forward problem via computationally expensive sampling techniques, which makes the method almost impractical. In this paper novel stochastic computational techniques such as the stochastic Galerkin method are applied in order to accelerate the updating procedure. The idea is to replace the computationally expensive forward simulation via
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
—
Svazek periodika
18
Číslo periodika v rámci svazku
236
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
11
Strana od-do
4862-4872
Kód UT WoS článku
000307425900025
EID výsledku v databázi Scopus
—