On Computing Ellipsoidal Harmonics Using Jekeli´s Renormalization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F12%3A00196251" target="_blank" >RIV/68407700:21110/12:00196251 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/67985815:_____/12:00388887
Výsledek na webu
<a href="http://dx.doi.org/10.1007/s00190-012-0549-4" target="_blank" >http://dx.doi.org/10.1007/s00190-012-0549-4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-012-0549-4" target="_blank" >10.1007/s00190-012-0549-4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
On Computing Ellipsoidal Harmonics Using Jekeli´s Renormalization
Popis výsledku v původním jazyce
Gravity data observed on or reduced to the ellipsoid are preferably represented using ellipsoidal harmonics instead of spherical harmonics. Ellipsoidal harmonics, however, are difficult to use in practice because the computation of the associated Legendre functions of the second kind that occur in the ellipsoidal harmonic expansions is not straightforward. Jekeli's renormalization simplifies the computation of the associated Legendre functions. We extended the direct computation of these functions-as well as that of their ratio-up to the second derivatives and minimized the number of required recurrences by a suitable hypergeometric transformation. Compared with the original Jekeli's renormalization the associated Legendre differential equation is fulfilled up to much higher degrees and orders for our optimized recurrences. The derived functions were tested by comparing functionals of the gravitational potential computed with both ellipsoidal and spherical harmonic syntheses. As an inp
Název v anglickém jazyce
On Computing Ellipsoidal Harmonics Using Jekeli´s Renormalization
Popis výsledku anglicky
Gravity data observed on or reduced to the ellipsoid are preferably represented using ellipsoidal harmonics instead of spherical harmonics. Ellipsoidal harmonics, however, are difficult to use in practice because the computation of the associated Legendre functions of the second kind that occur in the ellipsoidal harmonic expansions is not straightforward. Jekeli's renormalization simplifies the computation of the associated Legendre functions. We extended the direct computation of these functions-as well as that of their ratio-up to the second derivatives and minimized the number of required recurrences by a suitable hypergeometric transformation. Compared with the original Jekeli's renormalization the associated Legendre differential equation is fulfilled up to much higher degrees and orders for our optimized recurrences. The derived functions were tested by comparing functionals of the gravitational potential computed with both ellipsoidal and spherical harmonic syntheses. As an inp
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
BN - Astronomie a nebeská mechanika, astrofyzika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2012
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Geodesy
ISSN
0949-7714
e-ISSN
—
Svazek periodika
86
Číslo periodika v rámci svazku
9
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
14
Strana od-do
713-726
Kód UT WoS článku
000307556800003
EID výsledku v databázi Scopus
—