Multiscale Micromechanical Damage Model for Compressive Strength Based on Cement Paste Microstructure
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F15%3A00233150" target="_blank" >RIV/68407700:21110/15:00233150 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multiscale Micromechanical Damage Model for Compressive Strength Based on Cement Paste Microstructure
Popis výsledku v původním jazyce
Compressive strength is one of the most important and tested mechanical properties of cement paste. This paper presents a new four-level micromechanical model for compressive strength applicable on both pure and blended cement pastes. The model assumes that intrinsic tensile strength of C-S-H globules governs the compressive strength of cement paste. Crack propagation on all hierarchical levels starts once tensile stresses on a randomly inclined ellipsoidal inclusions within C-S-H exceed cohesive stress. The inclusion of unhydrated clinker, supplementary cementitious materials, other hydration products, or entrapped (or entrained) air further decreases the compressive strength of cement paste. The multiscale model uses volume fractions of principal chemical phases as input parameters as well as introduces a spatial gradient of C-S-H between individual grains which has a pronounced impact on predicted compressive strength. Calibration of the model on 95 experimental compressive strength
Název v anglickém jazyce
Multiscale Micromechanical Damage Model for Compressive Strength Based on Cement Paste Microstructure
Popis výsledku anglicky
Compressive strength is one of the most important and tested mechanical properties of cement paste. This paper presents a new four-level micromechanical model for compressive strength applicable on both pure and blended cement pastes. The model assumes that intrinsic tensile strength of C-S-H globules governs the compressive strength of cement paste. Crack propagation on all hierarchical levels starts once tensile stresses on a randomly inclined ellipsoidal inclusions within C-S-H exceed cohesive stress. The inclusion of unhydrated clinker, supplementary cementitious materials, other hydration products, or entrapped (or entrained) air further decreases the compressive strength of cement paste. The multiscale model uses volume fractions of principal chemical phases as input parameters as well as introduces a spatial gradient of C-S-H between individual grains which has a pronounced impact on predicted compressive strength. Calibration of the model on 95 experimental compressive strength
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JN - Stavebnictví
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
CONCREEP-10 Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures
ISBN
978-0-7844-7934-6
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
1211-1218
Název nakladatele
Vienna University Of Technology, Institute For Mechanics of Materials and Structures
Místo vydání
Vienna
Místo konání akce
Vídeň
Datum konání akce
21. 9. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—