Mesoscopic aspects of root water uptake modeling – hydraulic resistances and root geometry interpretations in plant transpiration analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00235391" target="_blank" >RIV/68407700:21110/16:00235391 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1016/j.advwatres.2015.12.006" target="_blank" >http://dx.doi.org/10.1016/j.advwatres.2015.12.006</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.advwatres.2015.12.006" target="_blank" >10.1016/j.advwatres.2015.12.006</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Mesoscopic aspects of root water uptake modeling – hydraulic resistances and root geometry interpretations in plant transpiration analysis
Popis výsledku v původním jazyce
In the context of soil water flow modeling, root water uptake is often evaluated based on water potential difference between the soil and the plant (the water potential gradient approach). Root water uptake rate is modulated by hydraulic resistance of both the root itself, and the soil in the root vicinity. The soil hydraulic resistance is a function of actual soil water content and can be assessed assuming radial axisymmetric water flow toward a single root (at the mesoscopic scale). In the present study, three approximate solutions of mesoscopic root water uptake - finite difference approximation, steady-state solution, and steady-rate solution - are examined regarding their ability to capture the pressure head variations in the root vicinity. Insignificance of their differences when implemented in the macroscopic soil water flow model is demonstrated using the critical root water uptake concept. Subsequently, macroscopic simulations of coupled soil water flow and root water uptake are presented for a forest site under temperate humid climate. Predicted soil water pressure heads and actual transpiration rates are compared with observed data. Scenario simulations illustrate uncertainties associated with estimates of root geometrical and hydraulic properties. Regarding the actual transpiration prediction, the correct characterization of active root system geometry and hydraulic properties seems far more important than the choice of a particular mesoscopic model.
Název v anglickém jazyce
Mesoscopic aspects of root water uptake modeling – hydraulic resistances and root geometry interpretations in plant transpiration analysis
Popis výsledku anglicky
In the context of soil water flow modeling, root water uptake is often evaluated based on water potential difference between the soil and the plant (the water potential gradient approach). Root water uptake rate is modulated by hydraulic resistance of both the root itself, and the soil in the root vicinity. The soil hydraulic resistance is a function of actual soil water content and can be assessed assuming radial axisymmetric water flow toward a single root (at the mesoscopic scale). In the present study, three approximate solutions of mesoscopic root water uptake - finite difference approximation, steady-state solution, and steady-rate solution - are examined regarding their ability to capture the pressure head variations in the root vicinity. Insignificance of their differences when implemented in the macroscopic soil water flow model is demonstrated using the critical root water uptake concept. Subsequently, macroscopic simulations of coupled soil water flow and root water uptake are presented for a forest site under temperate humid climate. Predicted soil water pressure heads and actual transpiration rates are compared with observed data. Scenario simulations illustrate uncertainties associated with estimates of root geometrical and hydraulic properties. Regarding the actual transpiration prediction, the correct characterization of active root system geometry and hydraulic properties seems far more important than the choice of a particular mesoscopic model.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
DA - Hydrologie a limnologie
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GC14-15201J" target="_blank" >GC14-15201J: Podpovrchový transport vody, uhlíku a tepla - kombinovaný hydrologický, geochemický a izotopový přístup</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advances in Water Resources
ISSN
0309-1708
e-ISSN
—
Svazek periodika
88
Číslo periodika v rámci svazku
February
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
11
Strana od-do
86-96
Kód UT WoS článku
000371311800010
EID výsledku v databázi Scopus
2-s2.0-84952815027