Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Simple Representation of Plant Water Storage Effects in Coupled Soil Water Flow and Transpiration Stream Modeling

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312050" target="_blank" >RIV/68407700:21110/17:00312050 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.2136/vzj2016.12.0128" target="_blank" >http://dx.doi.org/10.2136/vzj2016.12.0128</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.2136/vzj2016.12.0128" target="_blank" >10.2136/vzj2016.12.0128</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Simple Representation of Plant Water Storage Effects in Coupled Soil Water Flow and Transpiration Stream Modeling

  • Popis výsledku v původním jazyce

    When describing the movement of water in a variably saturated plant root zone, most existing hydrological models use the assumption of quasi-steady-state flow to relate root water uptake to canopy transpiration, thereby neglecting the effect of changing plant water storage. This approach is known to be problematic, especially when considering relatively large volumes of water stored in the tissues of tall trees. We propose a simple algorithm, based on the concept of whole-plant hydraulic capacitance, to deal with the problem. The algorithm is implemented in a one-dimensional soil water flow model involving vertically distributed macroscopic root water uptake. In this study, the proposed transient storage approach was compared with the quasi-steady-state approach. Both approaches were used to simulate soil water flow and diurnal variations of transpiration at a forest site covered with Norway spruce [Picea abies (L.) H. Karst.]. The key parameter of the transient storage approach, the plant hydraulic capacitance, is estimated by comparing the variations in the potential transpiration rate, derived from micrometeorological measurements, with observed sap flow intensities. The application of the proposed algorithm leads to more realistic predictions of root water uptake rates at the site of interest. The inclusion of the plant water storage effects improved the ability of the model to capture the anticipated diurnal variations in actual transpiration rates. The algorithm can be easily implemented into existing soil water flow models and used to simulate transpiration stream responses to varying atmospheric and soil moisture conditions including isohydric and partly also anisohydric plant responses to drought stress.

  • Název v anglickém jazyce

    A Simple Representation of Plant Water Storage Effects in Coupled Soil Water Flow and Transpiration Stream Modeling

  • Popis výsledku anglicky

    When describing the movement of water in a variably saturated plant root zone, most existing hydrological models use the assumption of quasi-steady-state flow to relate root water uptake to canopy transpiration, thereby neglecting the effect of changing plant water storage. This approach is known to be problematic, especially when considering relatively large volumes of water stored in the tissues of tall trees. We propose a simple algorithm, based on the concept of whole-plant hydraulic capacitance, to deal with the problem. The algorithm is implemented in a one-dimensional soil water flow model involving vertically distributed macroscopic root water uptake. In this study, the proposed transient storage approach was compared with the quasi-steady-state approach. Both approaches were used to simulate soil water flow and diurnal variations of transpiration at a forest site covered with Norway spruce [Picea abies (L.) H. Karst.]. The key parameter of the transient storage approach, the plant hydraulic capacitance, is estimated by comparing the variations in the potential transpiration rate, derived from micrometeorological measurements, with observed sap flow intensities. The application of the proposed algorithm leads to more realistic predictions of root water uptake rates at the site of interest. The inclusion of the plant water storage effects improved the ability of the model to capture the anticipated diurnal variations in actual transpiration rates. The algorithm can be easily implemented into existing soil water flow models and used to simulate transpiration stream responses to varying atmospheric and soil moisture conditions including isohydric and partly also anisohydric plant responses to drought stress.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10501 - Hydrology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-05665S" target="_blank" >GA16-05665S: Režim půdní vody v malých horských povodích vystavených klimatickému stresu</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Vadose Zone Journal

  • ISSN

    1539-1663

  • e-ISSN

  • Svazek periodika

    16

  • Číslo periodika v rámci svazku

    5

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

  • Kód UT WoS článku

    000402314000006

  • EID výsledku v databázi Scopus

    2-s2.0-85019220385