Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Approximation of large data from the finite element analysis allowing fast post-processing

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00242422" target="_blank" >RIV/68407700:21110/16:00242422 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2016.02.008" target="_blank" >http://dx.doi.org/10.1016/j.advengsoft.2016.02.008</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.advengsoft.2016.02.008" target="_blank" >10.1016/j.advengsoft.2016.02.008</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Approximation of large data from the finite element analysis allowing fast post-processing

  • Popis výsledku v původním jazyce

    The article describes efficient methods to visualize the results from finite element analysis and implementation of these methods in post-processing results. The work is based on premise that computer memory and performance are limited and amount of data processed by complex finite element analysis is enormous. Therefore, some kind of simplification and approximation of resulting data has to be used. Multigrid method was the inspiration for research work and development of post-processor. The stored data from finite element analysis are discrete values. The paper deals with several ways of replacing them by continuous functions suitable for representation in computer graphics, which are different from the approximation functions used in finite element method. Special attention is devoted to approximation errors - difference between these functions. Finite element mesh is decomposed into subdomains with respect to approximation errors. The ways of creating mesh hierarchy are described in details and also the possibilities of nodal value interpolations in simplified mesh are discussed in the text. Besides the approximation of data in space, also the approximation in time is used. Pseudo-code of the approximation algorithm key parts is shown. Various types of approximation functions were investigated to reach the lowest approximation error and the highest compression factor. Results are summarized in the article.

  • Název v anglickém jazyce

    Approximation of large data from the finite element analysis allowing fast post-processing

  • Popis výsledku anglicky

    The article describes efficient methods to visualize the results from finite element analysis and implementation of these methods in post-processing results. The work is based on premise that computer memory and performance are limited and amount of data processed by complex finite element analysis is enormous. Therefore, some kind of simplification and approximation of resulting data has to be used. Multigrid method was the inspiration for research work and development of post-processor. The stored data from finite element analysis are discrete values. The paper deals with several ways of replacing them by continuous functions suitable for representation in computer graphics, which are different from the approximation functions used in finite element method. Special attention is devoted to approximation errors - difference between these functions. Finite element mesh is decomposed into subdomains with respect to approximation errors. The ways of creating mesh hierarchy are described in details and also the possibilities of nodal value interpolations in simplified mesh are discussed in the text. Besides the approximation of data in space, also the approximation in time is used. Pseudo-code of the approximation algorithm key parts is shown. Various types of approximation functions were investigated to reach the lowest approximation error and the highest compression factor. Results are summarized in the article.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JM - Inženýrské stavitelství

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA15-05935S" target="_blank" >GA15-05935S: Vývoj termo-hydro-mechanického modelu pro expanzívní zeminy a simulace úložiště radioaktivních odpadů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Advances in Engineering Software

  • ISSN

    0965-9978

  • e-ISSN

  • Svazek periodika

    97

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    12

  • Strana od-do

    17-28

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus

    2-s2.0-84960358562