A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00243029" target="_blank" >RIV/68407700:21110/16:00243029 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0021999116301863" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0021999116301863</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jcp.2016.05.041" target="_blank" >10.1016/j.jcp.2016.05.041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media
Popis výsledku v původním jazyce
In this paper, we assess the performance of four iterative algorithms for solving non-symmetric rank-deficient linear systems arising in the FFT-based homogenization of heterogeneous materials defined by digital images. Our framework is based on the Fourier–Galerkin method with exact and approximate integrations that has recently been shown to generalize the Lippmann–Schwinger setting of the original work by Moulinec and Suquet from 1994. It follows from this variational format that the ensuing system of linear equations can be solved by general-purpose iterative algorithms for symmetric positive-definite systems, such as the Richardson, the Conjugate gradient, and the Chebyshev algorithms, that are compared here to the Eyre–Milton scheme — the most efficient specialized method currently available. Our numerical experiments, carried out for two-dimensional elliptic problems, reveal that the Conjugate gradient algorithm is the most efficient option, while the Eyre–Milton method performs comparably to the Chebyshev semi-iteration. The Richardson algorithm, equivalent to the still widely used original Moulinec–Suquet solver, exhibits the slowest convergence. Besides this, we hope that our study highlights the potential of the well-established techniques of numerical linear algebra to further increase the efficiency of FFT-based homogenization methods.
Název v anglickém jazyce
A comparative study on low-memory iterative solvers for FFT-based homogenization of periodic media
Popis výsledku anglicky
In this paper, we assess the performance of four iterative algorithms for solving non-symmetric rank-deficient linear systems arising in the FFT-based homogenization of heterogeneous materials defined by digital images. Our framework is based on the Fourier–Galerkin method with exact and approximate integrations that has recently been shown to generalize the Lippmann–Schwinger setting of the original work by Moulinec and Suquet from 1994. It follows from this variational format that the ensuing system of linear equations can be solved by general-purpose iterative algorithms for symmetric positive-definite systems, such as the Richardson, the Conjugate gradient, and the Chebyshev algorithms, that are compared here to the Eyre–Milton scheme — the most efficient specialized method currently available. Our numerical experiments, carried out for two-dimensional elliptic problems, reveal that the Conjugate gradient algorithm is the most efficient option, while the Eyre–Milton method performs comparably to the Chebyshev semi-iteration. The Richardson algorithm, equivalent to the still widely used original Moulinec–Suquet solver, exhibits the slowest convergence. Besides this, we hope that our study highlights the potential of the well-established techniques of numerical linear algebra to further increase the efficiency of FFT-based homogenization methods.
Klasifikace
Druh
J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)
CEP obor
JI - Kompositní materiály
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational Physics
ISSN
0021-9991
e-ISSN
—
Svazek periodika
321
Číslo periodika v rámci svazku
September
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
18
Strana od-do
151-168
Kód UT WoS článku
000380750500008
EID výsledku v databázi Scopus
2-s2.0-84974555568