Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Bayesian calibration of lattice discrete particle model for concrete

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F16%3A00243298" target="_blank" >RIV/68407700:21110/16:00243298 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Bayesian calibration of lattice discrete particle model for concrete

  • Popis výsledku v původním jazyce

    In lattice or particle formulations of models for quasi-brittle materials, a medium is discretized ``a priori'' according to an idealization of its internal structure. Geometrical parameters of particles or lattice equip these type of formulations with inherent characteristic lengths and they have the intrinsic ability of simulating the geometrical features of material internal structure. This allows the accurate simulation of damage initiation and crack propagation at various length scales, however, at increased computational costs. Here we employ the so-called Lattice Discrete Particle Model (LDPM). LDPM was calibrated, and validated against a large variety of loading conditions in both quasi-static and dynamic loading conditions and it was demonstrated to possess superior predictive capability. Nevertheless, the utilized calibration procedure was based on a hand-fitting, which complicates further practical applications of the model. Here we present a Bayesian inference of model parameters from experimental data obtained from notched three-point-bending tests and cube compression tests. The Bayesian inference allows to solve the inverse problem as well-possed and to quantify posterior uncertainty in parameters by combining a prior knowledge about the realistic parameter values and uncertainty contained in measurement errors. In particular, we obtain the posterior distributions by robust the Markov chain Monte Carlo sampling, where the computational burden, arising from repeated model simulations, is overcome by using a polynomial chaos-based surrogate of the LDPM.

  • Název v anglickém jazyce

    Bayesian calibration of lattice discrete particle model for concrete

  • Popis výsledku anglicky

    In lattice or particle formulations of models for quasi-brittle materials, a medium is discretized ``a priori'' according to an idealization of its internal structure. Geometrical parameters of particles or lattice equip these type of formulations with inherent characteristic lengths and they have the intrinsic ability of simulating the geometrical features of material internal structure. This allows the accurate simulation of damage initiation and crack propagation at various length scales, however, at increased computational costs. Here we employ the so-called Lattice Discrete Particle Model (LDPM). LDPM was calibrated, and validated against a large variety of loading conditions in both quasi-static and dynamic loading conditions and it was demonstrated to possess superior predictive capability. Nevertheless, the utilized calibration procedure was based on a hand-fitting, which complicates further practical applications of the model. Here we present a Bayesian inference of model parameters from experimental data obtained from notched three-point-bending tests and cube compression tests. The Bayesian inference allows to solve the inverse problem as well-possed and to quantify posterior uncertainty in parameters by combining a prior knowledge about the realistic parameter values and uncertainty contained in measurement errors. In particular, we obtain the posterior distributions by robust the Markov chain Monte Carlo sampling, where the computational burden, arising from repeated model simulations, is overcome by using a polynomial chaos-based surrogate of the LDPM.

Klasifikace

  • Druh

    O - Ostatní výsledky

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GJ16-11473Y" target="_blank" >GJ16-11473Y: Identifikace aleatorické nejistoty v parametrech heterogenních materiálů</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů