Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00357634" target="_blank" >RIV/68407700:21110/21:00357634 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.engstruct.2021.112000" target="_blank" >https://doi.org/10.1016/j.engstruct.2021.112000</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.engstruct.2021.112000" target="_blank" >10.1016/j.engstruct.2021.112000</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete

  • Popis výsledku v původním jazyce

    Numerical modelling of quasi-brittle materials arising from lattice or particle formulations is based on "a prior" discretisation of a medium according to an idealization of its granularity. This paper concentrates on the so-called Lattice Discrete Particle Model (LDPM), which provides accurate modelling of damage initiation and crack propagation at various length scales. However, its simulations are computationally demanding. We propose an automated identification procedure that would facilitate widespread utilisation without requiring deep expert knowledge about details of the model. Such an automated procedure is complicated, namely due to stochasticity of the LDPM related to the random generation of the particle configuration. The particle size distribution is generated so that it statistically corresponds to prescribed concrete granulometric distributions, but each realisation of particle configuration is created at random. For the proposed identification procedure, probabilistic Bayesian formulation is used to obtain robustness and stability, and time requirements are kept at a reasonable level thanks to the LDPM's polynomial chaos approximation. The Bayesian formulation solves such an inverse problem as well-posed and provides a quantitative assessment of the underlying uncertainty for the values of material properties identified. The procedure is applied to identify seven material parameters from an unconfined compression cube test and notched three-point bending test. Its efficiency is verified on synthetic data with known parameter values in order to quantify the accuracy of the estimates and it is also validated using experimental data to prove its robustness.

  • Název v anglickém jazyce

    Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete

  • Popis výsledku anglicky

    Numerical modelling of quasi-brittle materials arising from lattice or particle formulations is based on "a prior" discretisation of a medium according to an idealization of its granularity. This paper concentrates on the so-called Lattice Discrete Particle Model (LDPM), which provides accurate modelling of damage initiation and crack propagation at various length scales. However, its simulations are computationally demanding. We propose an automated identification procedure that would facilitate widespread utilisation without requiring deep expert knowledge about details of the model. Such an automated procedure is complicated, namely due to stochasticity of the LDPM related to the random generation of the particle configuration. The particle size distribution is generated so that it statistically corresponds to prescribed concrete granulometric distributions, but each realisation of particle configuration is created at random. For the proposed identification procedure, probabilistic Bayesian formulation is used to obtain robustness and stability, and time requirements are kept at a reasonable level thanks to the LDPM's polynomial chaos approximation. The Bayesian formulation solves such an inverse problem as well-posed and provides a quantitative assessment of the underlying uncertainty for the values of material properties identified. The procedure is applied to identify seven material parameters from an unconfined compression cube test and notched three-point bending test. Its efficiency is verified on synthetic data with known parameter values in order to quantify the accuracy of the estimates and it is also validated using experimental data to prove its robustness.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Engineering Structures

  • ISSN

    0141-0296

  • e-ISSN

    1873-7323

  • Svazek periodika

    236

  • Číslo periodika v rámci svazku

    112000

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    13

  • Strana od-do

  • Kód UT WoS článku

    000639090800005

  • EID výsledku v databázi Scopus

    2-s2.0-85103269593