Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F21%3A00357634" target="_blank" >RIV/68407700:21110/21:00357634 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.engstruct.2021.112000" target="_blank" >https://doi.org/10.1016/j.engstruct.2021.112000</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.engstruct.2021.112000" target="_blank" >10.1016/j.engstruct.2021.112000</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete
Popis výsledku v původním jazyce
Numerical modelling of quasi-brittle materials arising from lattice or particle formulations is based on "a prior" discretisation of a medium according to an idealization of its granularity. This paper concentrates on the so-called Lattice Discrete Particle Model (LDPM), which provides accurate modelling of damage initiation and crack propagation at various length scales. However, its simulations are computationally demanding. We propose an automated identification procedure that would facilitate widespread utilisation without requiring deep expert knowledge about details of the model. Such an automated procedure is complicated, namely due to stochasticity of the LDPM related to the random generation of the particle configuration. The particle size distribution is generated so that it statistically corresponds to prescribed concrete granulometric distributions, but each realisation of particle configuration is created at random. For the proposed identification procedure, probabilistic Bayesian formulation is used to obtain robustness and stability, and time requirements are kept at a reasonable level thanks to the LDPM's polynomial chaos approximation. The Bayesian formulation solves such an inverse problem as well-posed and provides a quantitative assessment of the underlying uncertainty for the values of material properties identified. The procedure is applied to identify seven material parameters from an unconfined compression cube test and notched three-point bending test. Its efficiency is verified on synthetic data with known parameter values in order to quantify the accuracy of the estimates and it is also validated using experimental data to prove its robustness.
Název v anglickém jazyce
Robust probabilistic calibration of a stochastic lattice discrete particle model for concrete
Popis výsledku anglicky
Numerical modelling of quasi-brittle materials arising from lattice or particle formulations is based on "a prior" discretisation of a medium according to an idealization of its granularity. This paper concentrates on the so-called Lattice Discrete Particle Model (LDPM), which provides accurate modelling of damage initiation and crack propagation at various length scales. However, its simulations are computationally demanding. We propose an automated identification procedure that would facilitate widespread utilisation without requiring deep expert knowledge about details of the model. Such an automated procedure is complicated, namely due to stochasticity of the LDPM related to the random generation of the particle configuration. The particle size distribution is generated so that it statistically corresponds to prescribed concrete granulometric distributions, but each realisation of particle configuration is created at random. For the proposed identification procedure, probabilistic Bayesian formulation is used to obtain robustness and stability, and time requirements are kept at a reasonable level thanks to the LDPM's polynomial chaos approximation. The Bayesian formulation solves such an inverse problem as well-posed and provides a quantitative assessment of the underlying uncertainty for the values of material properties identified. The procedure is applied to identify seven material parameters from an unconfined compression cube test and notched three-point bending test. Its efficiency is verified on synthetic data with known parameter values in order to quantify the accuracy of the estimates and it is also validated using experimental data to prove its robustness.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Engineering Structures
ISSN
0141-0296
e-ISSN
1873-7323
Svazek periodika
236
Číslo periodika v rámci svazku
112000
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
13
Strana od-do
—
Kód UT WoS článku
000639090800005
EID výsledku v databázi Scopus
2-s2.0-85103269593