Bayesian Inference of Heterogeneous Viscoplastic Material Parameters
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00326093" target="_blank" >RIV/68407700:21110/18:00326093 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Inference of Heterogeneous Viscoplastic Material Parameters
Popis výsledku v původním jazyce
Modelling of heterogeneous materials based on randomness of model input parameters involves parameter identification which is focused on solving a stochastic inversion problem. It can be formulated as a search for probabilistic description of model parameters providing the distribution of the model response corresponding to the distribution of the observed data. In this contribution, a numerical model of kinematic and isotropic hardening for viscoplastic material is calibrated on a basis of experimental data from a cyclic loading test at a high temperature. Five material model parameters are identified in probabilistic setting. The core of the identification method is the Bayesian inference of uncertain statistical moments of a prescribed joint lognormal distribution of the parameters. At first, synthetic experimental data are used to verify the identification procedure, then the real experimental data are processed to calibrate the material model of copper alloy.
Název v anglickém jazyce
Bayesian Inference of Heterogeneous Viscoplastic Material Parameters
Popis výsledku anglicky
Modelling of heterogeneous materials based on randomness of model input parameters involves parameter identification which is focused on solving a stochastic inversion problem. It can be formulated as a search for probabilistic description of model parameters providing the distribution of the model response corresponding to the distribution of the observed data. In this contribution, a numerical model of kinematic and isotropic hardening for viscoplastic material is calibrated on a basis of experimental data from a cyclic loading test at a high temperature. Five material model parameters are identified in probabilistic setting. The core of the identification method is the Bayesian inference of uncertain statistical moments of a prescribed joint lognormal distribution of the parameters. At first, synthetic experimental data are used to verify the identification procedure, then the real experimental data are processed to calibrate the material model of copper alloy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/GJ16-11473Y" target="_blank" >GJ16-11473Y: Identifikace aleatorické nejistoty v parametrech heterogenních materiálů</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
NMM 2018 - Nano & Macro Mechanics 2018
ISBN
978-80-01-06457-3
ISSN
—
e-ISSN
2336-5382
Počet stran výsledku
5
Strana od-do
41-45
Název nakladatele
Czech Technical University in Prague
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
20. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000461834500008