Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Finite strain FFT-based non-linear solvers made simple

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00308041" target="_blank" >RIV/68407700:21110/17:00308041 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://arxiv.org/abs/1603.08893" target="_blank" >http://arxiv.org/abs/1603.08893</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cma.2016.12.032" target="_blank" >10.1016/j.cma.2016.12.032</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Finite strain FFT-based non-linear solvers made simple

  • Popis výsledku v původním jazyce

    Computational micromechanics and homogenization require the solution of the mechanical equilibrium of a periodic cell that comprises a (generally complex) microstructure. Techniques that apply the Fast Fourier Transform have attracted much attention as they outperform other methods in terms of speed and memory footprint. Moreover, the Fast Fourier Transform is a natural companion of pixel-based digital images which often serve as input. In its original form, one of the biggest challenges for the method is the treatment of (geometrically) non-linear problems, partially due to the need for a uniform linear reference problem. In a geometrically linear setting, the problem has recently been treated in a variational form resulting in an unconditionally stable scheme that combines Newton iterations with an iterative linear solver, and therefore exhibits robust and quadratic convergence behavior. Through this approach, well-known key ingredients were recovered in terms of discretization, numerical quadrature, consistent linearization of the material model, and the iterative solution of the resulting linear system. As a result, the extension to finite strains, using arbitrary constitutive models, is at hand. Because of the application of the Fast Fourier Transform, the implementation is substantially easier than that of other (Finite Element) methods. Both claims are demonstrated in this paper and substantiated with a simple code in Python of just 59 lines (without comments). The aim is to render the method transparent and accessible, whereby researchers that are new to this method should be able to implement it efficiently. The potential of this method is demonstrated using two examples, each with a different material model.

  • Název v anglickém jazyce

    Finite strain FFT-based non-linear solvers made simple

  • Popis výsledku anglicky

    Computational micromechanics and homogenization require the solution of the mechanical equilibrium of a periodic cell that comprises a (generally complex) microstructure. Techniques that apply the Fast Fourier Transform have attracted much attention as they outperform other methods in terms of speed and memory footprint. Moreover, the Fast Fourier Transform is a natural companion of pixel-based digital images which often serve as input. In its original form, one of the biggest challenges for the method is the treatment of (geometrically) non-linear problems, partially due to the need for a uniform linear reference problem. In a geometrically linear setting, the problem has recently been treated in a variational form resulting in an unconditionally stable scheme that combines Newton iterations with an iterative linear solver, and therefore exhibits robust and quadratic convergence behavior. Through this approach, well-known key ingredients were recovered in terms of discretization, numerical quadrature, consistent linearization of the material model, and the iterative solution of the resulting linear system. As a result, the extension to finite strains, using arbitrary constitutive models, is at hand. Because of the application of the Fast Fourier Transform, the implementation is substantially easier than that of other (Finite Element) methods. Both claims are demonstrated in this paper and substantiated with a simple code in Python of just 59 lines (without comments). The aim is to render the method transparent and accessible, whereby researchers that are new to this method should be able to implement it efficiently. The potential of this method is demonstrated using two examples, each with a different material model.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA14-00420S" target="_blank" >GA14-00420S: Kvazikontuální metody pro diskrétní disipativní soustavy</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Methods in Applied Mechanics and Engineering

  • ISSN

    0045-7825

  • e-ISSN

    1879-2138

  • Svazek periodika

    318

  • Číslo periodika v rámci svazku

    May

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    19

  • Strana od-do

    412-430

  • Kód UT WoS článku

    000399586700015

  • EID výsledku v databázi Scopus

    2-s2.0-85013059749