A finite element perspective on nonlinear FFT-based micromechanical simulations
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312836" target="_blank" >RIV/68407700:21110/17:00312836 - isvavai.cz</a>
Výsledek na webu
<a href="http://arxiv.org/abs/1601.05970" target="_blank" >http://arxiv.org/abs/1601.05970</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1002/nme.5481" target="_blank" >10.1002/nme.5481</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A finite element perspective on nonlinear FFT-based micromechanical simulations
Popis výsledku v původním jazyce
Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the finite element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency results from handling the kernel of this equation by the fast Fourier transform (FFT). However, the kernel is derived from an auxiliary homogeneous linear problem, which renders the extension of FFT-based schemes to nonlinear problems conceptually difficult. This paper aims to establish a link between FE-based and FFT-based methods in order to develop a solver applicable to general history-dependent and time-dependent material models. For this purpose, we follow the standard steps of the FE method, starting from the weak form, proceeding to the Galerkin discretization and the numerical quadrature, up to the solution of nonlinear equilibrium equations by an iterative Newton-Krylov solver. No auxiliary linear problem is thus needed. By analyzing a two-phase laminate with nonlinear elastic, elastoplastic, and viscoplastic phases and by elastoplastic simulations of a dual-phase steel microstructure, we demonstrate that the solver exhibits robust convergence. These results are achieved by re-using the nonlinear FE technology, with the potential of further extensions beyond small-strain inelasticity considered in this paper.
Název v anglickém jazyce
A finite element perspective on nonlinear FFT-based micromechanical simulations
Popis výsledku anglicky
Fourier solvers have become efficient tools to establish structure-property relations in heterogeneous materials. Introduced as an alternative to the finite element (FE) method, they are based on fixed-point solutions of the Lippmann-Schwinger type integral equation. Their computational efficiency results from handling the kernel of this equation by the fast Fourier transform (FFT). However, the kernel is derived from an auxiliary homogeneous linear problem, which renders the extension of FFT-based schemes to nonlinear problems conceptually difficult. This paper aims to establish a link between FE-based and FFT-based methods in order to develop a solver applicable to general history-dependent and time-dependent material models. For this purpose, we follow the standard steps of the FE method, starting from the weak form, proceeding to the Galerkin discretization and the numerical quadrature, up to the solution of nonlinear equilibrium equations by an iterative Newton-Krylov solver. No auxiliary linear problem is thus needed. By analyzing a two-phase laminate with nonlinear elastic, elastoplastic, and viscoplastic phases and by elastoplastic simulations of a dual-phase steel microstructure, we demonstrate that the solver exhibits robust convergence. These results are achieved by re-using the nonlinear FE technology, with the potential of further extensions beyond small-strain inelasticity considered in this paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20505 - Composites (including laminates, reinforced plastics, cermets, combined natural and synthetic fibre fabrics; filled composites)
Návaznosti výsledku
Projekt
<a href="/cs/project/GA13-22230S" target="_blank" >GA13-22230S: Hybridní víceúrovňové nástroje modelování heterogenních pevných látek</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal for Numerical Methods in Engineering
ISSN
0029-5981
e-ISSN
1097-0207
Svazek periodika
111
Číslo periodika v rámci svazku
10
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
24
Strana od-do
903-926
Kód UT WoS článku
000407854500001
EID výsledku v databázi Scopus
2-s2.0-85014905783