An Optimal Preconditioned FFT-accelerated Finite Element Solver for Homogenization
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F23%3A00362316" target="_blank" >RIV/68407700:21110/23:00362316 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.amc.2023.127835" target="_blank" >https://doi.org/10.1016/j.amc.2023.127835</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.amc.2023.127835" target="_blank" >10.1016/j.amc.2023.127835</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Optimal Preconditioned FFT-accelerated Finite Element Solver for Homogenization
Popis výsledku v původním jazyce
We generalize and provide a linear algebra-based perspective on a finite element (FE) homogenization scheme, pioneered by Schneider et al.[1] and Leuschner and Fritzen [2]. The efficiency of the scheme is based on a preconditioned, well-scaled reformulation allowing for the use of the conjugate gradient or similar iterative solvers. The geometrically-optimal preconditioner---a discretized Green’s function of a periodic homogeneous reference problem---has a block-diagonal structure in the Fourier space which permits its efficient inversion using fast Fourier transform (FFT) techniques for generic regular meshes. This implies that the scheme scales as $mathcal{O}(n log(n))$, like FFT, rendering it equivalent to spectral solvers in terms of computational efficiency. However, in contrast to classical spectral solvers, the proposed scheme works with FE shape functions with local supports and does not exhibit the Fourier ringing phenomenon. We show that the scheme achieves a number of iterations that are almost independent of spatial discretization. The scheme also scales mildly with phase contrast. We also discuss the equivalence between our displacement-based scheme and the recently proposed strain-based homogenization technique with finite-element projection.
Název v anglickém jazyce
An Optimal Preconditioned FFT-accelerated Finite Element Solver for Homogenization
Popis výsledku anglicky
We generalize and provide a linear algebra-based perspective on a finite element (FE) homogenization scheme, pioneered by Schneider et al.[1] and Leuschner and Fritzen [2]. The efficiency of the scheme is based on a preconditioned, well-scaled reformulation allowing for the use of the conjugate gradient or similar iterative solvers. The geometrically-optimal preconditioner---a discretized Green’s function of a periodic homogeneous reference problem---has a block-diagonal structure in the Fourier space which permits its efficient inversion using fast Fourier transform (FFT) techniques for generic regular meshes. This implies that the scheme scales as $mathcal{O}(n log(n))$, like FFT, rendering it equivalent to spectral solvers in terms of computational efficiency. However, in contrast to classical spectral solvers, the proposed scheme works with FE shape functions with local supports and does not exhibit the Fourier ringing phenomenon. We show that the scheme achieves a number of iterations that are almost independent of spatial discretization. The scheme also scales mildly with phase contrast. We also discuss the equivalence between our displacement-based scheme and the recently proposed strain-based homogenization technique with finite-element projection.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
APPLIED MATHEMATICS AND COMPUTATION
ISSN
0096-3003
e-ISSN
1873-5649
Svazek periodika
2023
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000927389700001
EID výsledku v databázi Scopus
2-s2.0-85147094097