Boundary Inverse for General Transport Model
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312402" target="_blank" >RIV/68407700:21110/17:00312402 - isvavai.cz</a>
Výsledek na webu
<a href="https://github.com/janhavelka/BIGTM" target="_blank" >https://github.com/janhavelka/BIGTM</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Boundary Inverse for General Transport Model
Popis výsledku v původním jazyce
BIGTM (Boundary Inverse of General Transport Model) is a toolbox developed in a Matlab environment with a main purpose to examine the possibility to recover parameter/s of elliptic and/or parabolic partial differential equations (PDEs) from Neumann-to-Dirichlet (NTD) or Dirichlet-to-Neumann (DTN) data on boundary. The idea of recovering the spatial distribution of material properties inside a domain of interest using only a boundary measurements dates back to 1930 in geophysics by R. E. Langer (1933), however, the principle of recovering the material information from Cauchy data is being named after Argentinian mathematician Alberto Calderón, who first defined a more profound mathematical formulation in a foundational paper published in 1980. Nowdays the method is most commonly used as a medical imaging technique named Electrical Impedance Tomography (EIT) which utilizes the solution of electrostatics. The main intention of this toolbox is to provide insight into this technique by allowing arbitrary boundary conditions, domain shapes and two types of PDEs.
Název v anglickém jazyce
Boundary Inverse for General Transport Model
Popis výsledku anglicky
BIGTM (Boundary Inverse of General Transport Model) is a toolbox developed in a Matlab environment with a main purpose to examine the possibility to recover parameter/s of elliptic and/or parabolic partial differential equations (PDEs) from Neumann-to-Dirichlet (NTD) or Dirichlet-to-Neumann (DTN) data on boundary. The idea of recovering the spatial distribution of material properties inside a domain of interest using only a boundary measurements dates back to 1930 in geophysics by R. E. Langer (1933), however, the principle of recovering the material information from Cauchy data is being named after Argentinian mathematician Alberto Calderón, who first defined a more profound mathematical formulation in a foundational paper published in 1980. Nowdays the method is most commonly used as a medical imaging technique named Electrical Impedance Tomography (EIT) which utilizes the solution of electrostatics. The main intention of this toolbox is to provide insight into this technique by allowing arbitrary boundary conditions, domain shapes and two types of PDEs.
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů