Convergence and stability analysis of heterogeneous time step coupling schemes for parabolic problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F17%3A00312563" target="_blank" >RIV/68407700:21110/17:00312563 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.sciencedirect.com/science/article/pii/S0168927417301617" target="_blank" >http://www.sciencedirect.com/science/article/pii/S0168927417301617</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.apnum.2017.07.003" target="_blank" >10.1016/j.apnum.2017.07.003</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Convergence and stability analysis of heterogeneous time step coupling schemes for parabolic problems
Popis výsledku v původním jazyce
We propose and rigorously analyze the subcycling method based on primal domain decomposition techniques for first-order transient partial differential equations. In time dependent problems, it can be computationally advantageous to use different time steps in different regions. Smaller time steps are used in regions of significant changes in the solution and larger time steps are prescribed in regions with nearly stationary response. Subcycling can efficiently reduce the total computational cost. Crucial to our approach is a nonstandard heterogeneous temporal discretization. We begin with the discretization in time by the asynchronous Rothe method, which, in essence, involves a backward finite difference scheme assuming different time steps (fine and large time steps) in different parts of the computational domain. The emphasis of the paper is on qualitative properties of the new numerical scheme, such as a-priori estimates, existence of the time-discrete solutions and the strong convergence and stability analysis. Several numerical experiments were conducted to examine the consistency of the proposed method.
Název v anglickém jazyce
Convergence and stability analysis of heterogeneous time step coupling schemes for parabolic problems
Popis výsledku anglicky
We propose and rigorously analyze the subcycling method based on primal domain decomposition techniques for first-order transient partial differential equations. In time dependent problems, it can be computationally advantageous to use different time steps in different regions. Smaller time steps are used in regions of significant changes in the solution and larger time steps are prescribed in regions with nearly stationary response. Subcycling can efficiently reduce the total computational cost. Crucial to our approach is a nonstandard heterogeneous temporal discretization. We begin with the discretization in time by the asynchronous Rothe method, which, in essence, involves a backward finite difference scheme assuming different time steps (fine and large time steps) in different parts of the computational domain. The emphasis of the paper is on qualitative properties of the new numerical scheme, such as a-priori estimates, existence of the time-discrete solutions and the strong convergence and stability analysis. Several numerical experiments were conducted to examine the consistency of the proposed method.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21450S" target="_blank" >GA14-21450S: Efektivní asynchronní numerické metody pro sdružené procesy ve stavebních konstrukcích a geomateriálech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Numerical Mathematics
ISSN
0168-9274
e-ISSN
1873-5460
Svazek periodika
121
Číslo periodika v rámci svazku
November
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
25
Strana od-do
198-222
Kód UT WoS článku
000410013800013
EID výsledku v databázi Scopus
2-s2.0-85026543430