A FETI-based mixed explicit–implicit multi-time-step method for parabolic problems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00315823" target="_blank" >RIV/68407700:21110/18:00315823 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0377042717305502" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0377042717305502</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cam.2017.10.041" target="_blank" >10.1016/j.cam.2017.10.041</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A FETI-based mixed explicit–implicit multi-time-step method for parabolic problems
Popis výsledku v původním jazyce
Nonstationary partial differential equations are numerically solved by discretizing in space and then integrating over time using discrete solvers. In this paper we propose and examine a mixed subcycling time stepping strategy using FETI domain decomposition for parabolic problems (e.g. transient heat conduction). The computational domain is divided into a set of smaller subdomains that may be integrated sequentially with its own time steps and generalized trapezoidal -methods. The continuity condition at the interface is ensured using a dual Schur complement formulation. The rigorous stability analysis of the proposed algorithm is performed via the energy method. It was proved that the method is unconditionally stable provided in all subdomains . Moreover, the same analysis indicates that the mixed explicit/implicit Euler method is conditionally stable. Some example problems are presented to examine the rate of convergence, stability as well as accuracy of the mixed multi-time step algorithm.
Název v anglickém jazyce
A FETI-based mixed explicit–implicit multi-time-step method for parabolic problems
Popis výsledku anglicky
Nonstationary partial differential equations are numerically solved by discretizing in space and then integrating over time using discrete solvers. In this paper we propose and examine a mixed subcycling time stepping strategy using FETI domain decomposition for parabolic problems (e.g. transient heat conduction). The computational domain is divided into a set of smaller subdomains that may be integrated sequentially with its own time steps and generalized trapezoidal -methods. The continuity condition at the interface is ensured using a dual Schur complement formulation. The rigorous stability analysis of the proposed algorithm is performed via the energy method. It was proved that the method is unconditionally stable provided in all subdomains . Moreover, the same analysis indicates that the mixed explicit/implicit Euler method is conditionally stable. Some example problems are presented to examine the rate of convergence, stability as well as accuracy of the mixed multi-time step algorithm.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GA14-21450S" target="_blank" >GA14-21450S: Efektivní asynchronní numerické metody pro sdružené procesy ve stavebních konstrukcích a geomateriálech</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Computational and Applied Mathematics
ISSN
0377-0427
e-ISSN
1879-1778
Svazek periodika
333
Číslo periodika v rámci svazku
May
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
19
Strana od-do
247-265
Kód UT WoS článku
000423654800018
EID výsledku v databázi Scopus
2-s2.0-85034830476