Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00323244" target="_blank" >RIV/68407700:21110/18:00323244 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-97773-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-97773-7_2</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-97773-7_2" target="_blank" >10.1007/978-3-319-97773-7_2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications
Popis výsledku v původním jazyce
The use of evolutionary computational techniques has become widespread in many technical disciplines including, but not limited, neural networks and evolutionary algorithms. From these techniques, in the field of global optimization, mainly the evolutionary optimization algorithms are used, especially one of their types – genetic algorithms. From the mathematical point of view, the evolutionary and genetic algorithms are just another representatives of stochastic optimization algorithms. The aim of our research was to describe the basic properties of stochastic algorithms including genetic algorithms, to select suitable candidates from the class of traditional stochastic algorithms and to compare their behaviour with the genetic algorithms. In this paper, we are going to address so-called technical optimization, where we do not know the optimized function directly, but we are able to get the value of an optimized function at any point (for example by measuring a certain quantity). The stochastic optimization algorithms provide the advantage of efficient working even with such functions. An important criterion for optimization is also the ability to parallelize a task. The optimization algorithms can be implemented as a parallel system – we calculate the value of a purpose function at several points at the same time. The paper will also describe the specific described implementation and testing of selected algorithms on analytical functions as well as functions mediated by artificial neural networks, which have been learned on practice data. Furthermore, the algorithm implementation for different environments and their routine user-friendly practical applications are described.
Název v anglickém jazyce
Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications
Popis výsledku anglicky
The use of evolutionary computational techniques has become widespread in many technical disciplines including, but not limited, neural networks and evolutionary algorithms. From these techniques, in the field of global optimization, mainly the evolutionary optimization algorithms are used, especially one of their types – genetic algorithms. From the mathematical point of view, the evolutionary and genetic algorithms are just another representatives of stochastic optimization algorithms. The aim of our research was to describe the basic properties of stochastic algorithms including genetic algorithms, to select suitable candidates from the class of traditional stochastic algorithms and to compare their behaviour with the genetic algorithms. In this paper, we are going to address so-called technical optimization, where we do not know the optimized function directly, but we are able to get the value of an optimized function at any point (for example by measuring a certain quantity). The stochastic optimization algorithms provide the advantage of efficient working even with such functions. An important criterion for optimization is also the ability to parallelize a task. The optimization algorithms can be implemented as a parallel system – we calculate the value of a purpose function at several points at the same time. The paper will also describe the specific described implementation and testing of selected algorithms on analytical functions as well as functions mediated by artificial neural networks, which have been learned on practice data. Furthermore, the algorithm implementation for different environments and their routine user-friendly practical applications are described.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/TE02000077" target="_blank" >TE02000077: Inteligentní Regiony - Informační modelování budov a sídel, technologie a infrastruktura pro udržitelný rozvoj</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization
ISBN
9783319977737
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
15-28
Název nakladatele
Springer
Místo vydání
Basel
Místo konání akce
Lisabon
Datum konání akce
17. 9. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—