Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F18%3A00323244" target="_blank" >RIV/68407700:21110/18:00323244 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://dx.doi.org/10.1007/978-3-319-97773-7_2" target="_blank" >http://dx.doi.org/10.1007/978-3-319-97773-7_2</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1007/978-3-319-97773-7_2" target="_blank" >10.1007/978-3-319-97773-7_2</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications

  • Popis výsledku v původním jazyce

    The use of evolutionary computational techniques has become widespread in many technical disciplines including, but not limited, neural networks and evolutionary algorithms. From these techniques, in the field of global optimization, mainly the evolutionary optimization algorithms are used, especially one of their types – genetic algorithms. From the mathematical point of view, the evolutionary and genetic algorithms are just another representatives of stochastic optimization algorithms. The aim of our research was to describe the basic properties of stochastic algorithms including genetic algorithms, to select suitable candidates from the class of traditional stochastic algorithms and to compare their behaviour with the genetic algorithms. In this paper, we are going to address so-called technical optimization, where we do not know the optimized function directly, but we are able to get the value of an optimized function at any point (for example by measuring a certain quantity). The stochastic optimization algorithms provide the advantage of efficient working even with such functions. An important criterion for optimization is also the ability to parallelize a task. The optimization algorithms can be implemented as a parallel system – we calculate the value of a purpose function at several points at the same time. The paper will also describe the specific described implementation and testing of selected algorithms on analytical functions as well as functions mediated by artificial neural networks, which have been learned on practice data. Furthermore, the algorithm implementation for different environments and their routine user-friendly practical applications are described.

  • Název v anglickém jazyce

    Alternatives to Evolutionary Optimization Algorithms in the Context of Traditional Stochastic Optimization Methods in Smart Area Technical Equipment Applications

  • Popis výsledku anglicky

    The use of evolutionary computational techniques has become widespread in many technical disciplines including, but not limited, neural networks and evolutionary algorithms. From these techniques, in the field of global optimization, mainly the evolutionary optimization algorithms are used, especially one of their types – genetic algorithms. From the mathematical point of view, the evolutionary and genetic algorithms are just another representatives of stochastic optimization algorithms. The aim of our research was to describe the basic properties of stochastic algorithms including genetic algorithms, to select suitable candidates from the class of traditional stochastic algorithms and to compare their behaviour with the genetic algorithms. In this paper, we are going to address so-called technical optimization, where we do not know the optimized function directly, but we are able to get the value of an optimized function at any point (for example by measuring a certain quantity). The stochastic optimization algorithms provide the advantage of efficient working even with such functions. An important criterion for optimization is also the ability to parallelize a task. The optimization algorithms can be implemented as a parallel system – we calculate the value of a purpose function at several points at the same time. The paper will also describe the specific described implementation and testing of selected algorithms on analytical functions as well as functions mediated by artificial neural networks, which have been learned on practice data. Furthermore, the algorithm implementation for different environments and their routine user-friendly practical applications are described.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    20201 - Electrical and electronic engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/TE02000077" target="_blank" >TE02000077: Inteligentní Regiony - Informační modelování budov a sídel, technologie a infrastruktura pro udržitelný rozvoj</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2018

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    EngOpt 2018 Proceedings of the 6th International Conference on Engineering Optimization

  • ISBN

    9783319977737

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    14

  • Strana od-do

    15-28

  • Název nakladatele

    Springer

  • Místo vydání

    Basel

  • Místo konání akce

    Lisabon

  • Datum konání akce

    17. 9. 2018

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku