Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Effect of vacuum and Focused Ion Beam generated heat on fracture properties of hydrated cement paste

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F19%3A00333744" target="_blank" >RIV/68407700:21110/19:00333744 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/68378271:_____/19:00540578

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cemconcomp.2019.03.027" target="_blank" >https://doi.org/10.1016/j.cemconcomp.2019.03.027</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cemconcomp.2019.03.027" target="_blank" >10.1016/j.cemconcomp.2019.03.027</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Effect of vacuum and Focused Ion Beam generated heat on fracture properties of hydrated cement paste

  • Popis výsledku v původním jazyce

    The paper focuses on quantifying of vacuum and heat influence as unavoidable effects that appear during preparation and in-situ monitoring of micromechanical performance of cement pastes. Experimental tests at micrometer scale employ microscopic techniques of Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB). High vacuum is applied to samples during SEM-FIB procedures causing dessication and densification of primary cement paste constituents, the CSH gels. Collapse of pores and microstructural packing leads to their local stiffening and change in their fracture properties compared to usual partially saturated conditions of atmospheric pressures. The effect of vacuum is quantified for individual paste constituents in terms of their elastic moduli, tensile strengths and fracture energies measured on 15–20 μm long cantilever micro-beams inside SEM chamber. It was found that application of vacuum in SEM increases elastic moduli of inner and outer products by ~30%, tensile strength rises 2.3–2.5 times. The effect of local heating due to ionic interactions during FIB milling is studied by means of micromechanical measurements on micro-beams and finite element (FE) numerical model. It is shown that high energy milling (30 kV, 30 nA) causes substantial microstructural and subsequent mechanical changes leading to further stiffening and tensile strength increase in the micrometer scale. The effect originates from phase changes caused by elevated temperatures under the ion beam that can be locally very high (thousands of K according to the simplified FE model). The paper also reports micromechanical response received by low energy milling for which microstructural changes due to increased temperature are restricted to very small volumes and can be assumed to be negligible with respect to the micro-beam dimensions.

  • Název v anglickém jazyce

    Effect of vacuum and Focused Ion Beam generated heat on fracture properties of hydrated cement paste

  • Popis výsledku anglicky

    The paper focuses on quantifying of vacuum and heat influence as unavoidable effects that appear during preparation and in-situ monitoring of micromechanical performance of cement pastes. Experimental tests at micrometer scale employ microscopic techniques of Scanning Electron Microscopy (SEM) and Focused Ion Beam (FIB). High vacuum is applied to samples during SEM-FIB procedures causing dessication and densification of primary cement paste constituents, the CSH gels. Collapse of pores and microstructural packing leads to their local stiffening and change in their fracture properties compared to usual partially saturated conditions of atmospheric pressures. The effect of vacuum is quantified for individual paste constituents in terms of their elastic moduli, tensile strengths and fracture energies measured on 15–20 μm long cantilever micro-beams inside SEM chamber. It was found that application of vacuum in SEM increases elastic moduli of inner and outer products by ~30%, tensile strength rises 2.3–2.5 times. The effect of local heating due to ionic interactions during FIB milling is studied by means of micromechanical measurements on micro-beams and finite element (FE) numerical model. It is shown that high energy milling (30 kV, 30 nA) causes substantial microstructural and subsequent mechanical changes leading to further stiffening and tensile strength increase in the micrometer scale. The effect originates from phase changes caused by elevated temperatures under the ion beam that can be locally very high (thousands of K according to the simplified FE model). The paper also reports micromechanical response received by low energy milling for which microstructural changes due to increased temperature are restricted to very small volumes and can be assumed to be negligible with respect to the micro-beam dimensions.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-05360S" target="_blank" >GA17-05360S: Lomové vlastnosti amorfních a krystalických materiálů stanovené pomocí nanoindentace a fokusovaného iontového svazku v malém měřítku</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Cement and Concrete Composites

  • ISSN

    0958-9465

  • e-ISSN

    1873-393X

  • Svazek periodika

    100

  • Číslo periodika v rámci svazku

    July

  • Stát vydavatele periodika

    GB - Spojené království Velké Británie a Severního Irska

  • Počet stran výsledku

    11

  • Strana od-do

    139-149

  • Kód UT WoS článku

    000468708900014

  • EID výsledku v databázi Scopus

    2-s2.0-85064738841