Multilevel a posteriori error estimator for greedy reduced basis algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00340272" target="_blank" >RIV/68407700:21110/20:00340272 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/68407700:21220/20:00340272
Výsledek na webu
<a href="https://doi.org/10.1007/s42452-020-2409-9" target="_blank" >https://doi.org/10.1007/s42452-020-2409-9</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s42452-020-2409-9" target="_blank" >10.1007/s42452-020-2409-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Multilevel a posteriori error estimator for greedy reduced basis algorithms
Popis výsledku v původním jazyce
The goal of reduced basis algorithms is to provide a relatively small set of functions which can serve as a basis for sufficiently accurate and fast numerical solution of a parametrized problem for any choice of parameters. Such methods are often employed in parameter identification problems detecting, for instance, material qualities in diffusion problems, elasticity, or in Maxwell equations, or in time dependent problems where time plays the role of the parameter. We deal with greedy reduced basis algorithms. An important part of these algorithms is to estimate the difference between the exact solution of a discretized problem and its projection onto the space spanned by a reduced basis. We introduce a new kind of the estimate, which is based on a multilevel splitting of a discretized solution space, and we compare it with a standard estimate based on bounds to coercivity and continuity constants. Two sided guaranteed bounds to the error can be obtained for both methods. Numerical complexity as well as memory consumption of both methods are comparable, while the multilevel method provides a more accurate spatial distribution of the error.
Název v anglickém jazyce
Multilevel a posteriori error estimator for greedy reduced basis algorithms
Popis výsledku anglicky
The goal of reduced basis algorithms is to provide a relatively small set of functions which can serve as a basis for sufficiently accurate and fast numerical solution of a parametrized problem for any choice of parameters. Such methods are often employed in parameter identification problems detecting, for instance, material qualities in diffusion problems, elasticity, or in Maxwell equations, or in time dependent problems where time plays the role of the parameter. We deal with greedy reduced basis algorithms. An important part of these algorithms is to estimate the difference between the exact solution of a discretized problem and its projection onto the space spanned by a reduced basis. We introduce a new kind of the estimate, which is based on a multilevel splitting of a discretized solution space, and we compare it with a standard estimate based on bounds to coercivity and continuity constants. Two sided guaranteed bounds to the error can be obtained for both methods. Numerical complexity as well as memory consumption of both methods are comparable, while the multilevel method provides a more accurate spatial distribution of the error.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SN Applied Sciences
ISSN
2523-3963
e-ISSN
2523-3971
Svazek periodika
2
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
19
Strana od-do
—
Kód UT WoS článku
000532826500102
EID výsledku v databázi Scopus
2-s2.0-85100824106