Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00341259" target="_blank" >RIV/68407700:21110/20:00341259 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1186/s40323-020-00152-7" target="_blank" >https://doi.org/10.1186/s40323-020-00152-7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1186/s40323-020-00152-7" target="_blank" >10.1186/s40323-020-00152-7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials
Popis výsledku v původním jazyce
Exotic behaviour of mechanical metamaterials often relies on an internal transformation of the underlying microstructure triggered by its local instabilities, rearrangements, and rotations. Depending on the presence and magnitude of such a transformation, effective properties of a metamaterial may change significantly. To capture this phenomenon accurately and efficiently, homogenization schemes are required that reflect microstructural as well as macro-structural instabilities, large deformations, and non-local effects. To this end, a micromorphic computational homogenization scheme has recently been developed, which employs the particular microstructural transformation as a non-local mechanism, magnitude of which is governed by an additional coupled partial differential equation. Upon discretizing the resulting problem it turns out that the macroscopic stiffness matrix requires integration of macro-element basis functions as well as their derivatives, thus calling for higher-order integration rules. Because evaluation of a constitutive law in multiscale schemes involves an expensive solution of a non-linear boundary value problem, computational efficiency of the micromorphic scheme can be improved by reducing the number of integration points. Therefore, the goal of this paper is to investigate reduced-order schemes in computational homogenization, with emphasis on the stability of the resulting elements. In particular, arguments for lowering the order of integration from expensive mass-matrix to a cheaper stiffness-matrix equivalent are outlined first. An efficient one-point integration quadrilateral element is then introduced and a proper hourglass stabilization is discussed. Performance of the resulting set of elements is finally tested on a benchmark bending example, showing that we achieve accuracy comparable to the full quadrature rules, whereas computational cost decreases proportionally to the reduction in the number of quadrature points used.
Název v anglickém jazyce
Reduced integration schemes in micromorphic computational homogenization of elastomeric mechanical metamaterials
Popis výsledku anglicky
Exotic behaviour of mechanical metamaterials often relies on an internal transformation of the underlying microstructure triggered by its local instabilities, rearrangements, and rotations. Depending on the presence and magnitude of such a transformation, effective properties of a metamaterial may change significantly. To capture this phenomenon accurately and efficiently, homogenization schemes are required that reflect microstructural as well as macro-structural instabilities, large deformations, and non-local effects. To this end, a micromorphic computational homogenization scheme has recently been developed, which employs the particular microstructural transformation as a non-local mechanism, magnitude of which is governed by an additional coupled partial differential equation. Upon discretizing the resulting problem it turns out that the macroscopic stiffness matrix requires integration of macro-element basis functions as well as their derivatives, thus calling for higher-order integration rules. Because evaluation of a constitutive law in multiscale schemes involves an expensive solution of a non-linear boundary value problem, computational efficiency of the micromorphic scheme can be improved by reducing the number of integration points. Therefore, the goal of this paper is to investigate reduced-order schemes in computational homogenization, with emphasis on the stability of the resulting elements. In particular, arguments for lowering the order of integration from expensive mass-matrix to a cheaper stiffness-matrix equivalent are outlined first. An efficient one-point integration quadrilateral element is then introduced and a proper hourglass stabilization is discussed. Performance of the resulting set of elements is finally tested on a benchmark bending example, showing that we achieve accuracy comparable to the full quadrature rules, whereas computational cost decreases proportionally to the reduction in the number of quadrature points used.
Klasifikace
Druh
J<sub>SC</sub> - Článek v periodiku v databázi SCOPUS
CEP obor
—
OECD FORD obor
20501 - Materials engineering
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Advanced Modeling and Simulation in Engineering Sciences
ISSN
2213-7467
e-ISSN
2213-7467
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
GB - Spojené království Velké Británie a Severního Irska
Počet stran výsledku
17
Strana od-do
—
Kód UT WoS článku
—
EID výsledku v databázi Scopus
2-s2.0-85083388400