A comparative study of enriched computational homogenization schemes applied to two-dimensional pattern-transforming elastomeric mechanical metamaterials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F24%3A00378326" target="_blank" >RIV/68407700:21110/24:00378326 - isvavai.cz</a>
Výsledek na webu
<a href="http://hdl.handle.net/10467/119550" target="_blank" >http://hdl.handle.net/10467/119550</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00466-023-02428-2" target="_blank" >10.1007/s00466-023-02428-2</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A comparative study of enriched computational homogenization schemes applied to two-dimensional pattern-transforming elastomeric mechanical metamaterials
Popis výsledku v původním jazyce
Elastomeric mechanical metamaterials exhibit unconventional behaviour, emerging from their microstructures often deforming in a highly nonlinear and unstable manner. Such microstructural pattern transformations lead to non-local behaviour and induce abrupt changes in the effective properties, beneficial for engineering applications. To avoid expensive simulations fully resolving the underlying microstructure, homogenization methods are employed. In this contribution, a systematic comparative study is performed, assessing the predictive capability of several computational homogenization schemes in the realm of two-dimensional elastomeric metamaterials with a square stacking of circular holes. In particular, classical first-order and two enriched schemes of second-order and micromorphic cmoputational homogenziation type are compared with ensemble-averaged full direct numerical simulations on three examples: uniform compression and bending of an infinite specimen, and compression of a finite specimen. It is shown that although the second-order scheme provides good qualitative predictions, it fails in accurately capturing bifurcation strains and slightly over-predicts the homogenized response. The micromorphic method provides the most accurate prediction for tested examples, although soft boundary layers induce large errors at small scale ratios. The first-order scheme yields good predictions for high separations of scales, but suffers from convergence issues, especially when localization occurs.
Název v anglickém jazyce
A comparative study of enriched computational homogenization schemes applied to two-dimensional pattern-transforming elastomeric mechanical metamaterials
Popis výsledku anglicky
Elastomeric mechanical metamaterials exhibit unconventional behaviour, emerging from their microstructures often deforming in a highly nonlinear and unstable manner. Such microstructural pattern transformations lead to non-local behaviour and induce abrupt changes in the effective properties, beneficial for engineering applications. To avoid expensive simulations fully resolving the underlying microstructure, homogenization methods are employed. In this contribution, a systematic comparative study is performed, assessing the predictive capability of several computational homogenization schemes in the realm of two-dimensional elastomeric metamaterials with a square stacking of circular holes. In particular, classical first-order and two enriched schemes of second-order and micromorphic cmoputational homogenziation type are compared with ensemble-averaged full direct numerical simulations on three examples: uniform compression and bending of an infinite specimen, and compression of a finite specimen. It is shown that although the second-order scheme provides good qualitative predictions, it fails in accurately capturing bifurcation strains and slightly over-predicts the homogenized response. The micromorphic method provides the most accurate prediction for tested examples, although soft boundary layers induce large errors at small scale ratios. The first-order scheme yields good predictions for high separations of scales, but suffers from convergence issues, especially when localization occurs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20302 - Applied mechanics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computational Mechanics
ISSN
0178-7675
e-ISSN
1432-0924
Svazek periodika
74
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
22
Strana od-do
169-190
Kód UT WoS článku
001140372500002
EID výsledku v databázi Scopus
2-s2.0-85182187902