Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00344067" target="_blank" >RIV/68407700:21110/20:00344067 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://doi.org/10.1016/j.cma.2020.113333" target="_blank" >https://doi.org/10.1016/j.cma.2020.113333</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.cma.2020.113333" target="_blank" >10.1016/j.cma.2020.113333</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials

  • Popis výsledku v původním jazyce

    Mechanical metamaterials feature microstructures designed to exhibit exotic effective behaviour such as negative Poisson’s ratio or negative compressibility. Such a specific response is often achieved through instability-induced transformations of the underlying periodic microstructure. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. For efficient numerical predictions of macroscale engineering applications, a micromorphic computational homogenization scheme has recently been developed by the authors. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique, which is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. To address these serious limitations, a full Newton method, entailing all derivations and definitions of the tangent operators, is provided in detail in this paper. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge. The numerical results indicate that local to global buckling transition can be predicted within a relative error of 6% in terms of the applied strains. The expected pattern combinations are triggered even for the case of multiple patterns.

  • Název v anglickém jazyce

    A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials

  • Popis výsledku anglicky

    Mechanical metamaterials feature microstructures designed to exhibit exotic effective behaviour such as negative Poisson’s ratio or negative compressibility. Such a specific response is often achieved through instability-induced transformations of the underlying periodic microstructure. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. For efficient numerical predictions of macroscale engineering applications, a micromorphic computational homogenization scheme has recently been developed by the authors. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique, which is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. To address these serious limitations, a full Newton method, entailing all derivations and definitions of the tangent operators, is provided in detail in this paper. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge. The numerical results indicate that local to global buckling transition can be predicted within a relative error of 6% in terms of the applied strains. The expected pattern combinations are triggered even for the case of multiple patterns.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Computer Methods in Applied Mechanics and Engineering

  • ISSN

    0045-7825

  • e-ISSN

    1879-2138

  • Svazek periodika

    372

  • Číslo periodika v rámci svazku

    113333

  • Stát vydavatele periodika

    NL - Nizozemsko

  • Počet stran výsledku

    25

  • Strana od-do

  • Kód UT WoS článku

    000592532900007

  • EID výsledku v databázi Scopus

    2-s2.0-85090117223