A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21110%2F20%3A00344067" target="_blank" >RIV/68407700:21110/20:00344067 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.cma.2020.113333" target="_blank" >https://doi.org/10.1016/j.cma.2020.113333</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2020.113333" target="_blank" >10.1016/j.cma.2020.113333</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials
Popis výsledku v původním jazyce
Mechanical metamaterials feature microstructures designed to exhibit exotic effective behaviour such as negative Poisson’s ratio or negative compressibility. Such a specific response is often achieved through instability-induced transformations of the underlying periodic microstructure. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. For efficient numerical predictions of macroscale engineering applications, a micromorphic computational homogenization scheme has recently been developed by the authors. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique, which is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. To address these serious limitations, a full Newton method, entailing all derivations and definitions of the tangent operators, is provided in detail in this paper. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge. The numerical results indicate that local to global buckling transition can be predicted within a relative error of 6% in terms of the applied strains. The expected pattern combinations are triggered even for the case of multiple patterns.
Název v anglickém jazyce
A Newton solver for micromorphic computational homogenization enabling multiscale buckling analysis of pattern-transforming metamaterials
Popis výsledku anglicky
Mechanical metamaterials feature microstructures designed to exhibit exotic effective behaviour such as negative Poisson’s ratio or negative compressibility. Such a specific response is often achieved through instability-induced transformations of the underlying periodic microstructure. Due to a strong kinematic coupling of individual repeating microstructural cells, non-local behaviour and size effects emerge, which cannot easily be captured by classical homogenization schemes. For efficient numerical predictions of macroscale engineering applications, a micromorphic computational homogenization scheme has recently been developed by the authors. Although this framework is in principle capable of accounting for spatial and temporal interactions between individual patterning modes, its implementation relied on a gradient-based quasi-Newton solution technique, which is suboptimal because (i) it has sub-quadratic convergence, and (ii) the absence of Hessians does not allow for proper bifurcation analyses. To address these serious limitations, a full Newton method, entailing all derivations and definitions of the tangent operators, is provided in detail in this paper. Analytical expressions for the first and second variation of the total potential energy are given, and the complete algorithm is listed. The developed methodology is demonstrated with two examples in which a competition between local and global buckling exists and where multiple patterning modes emerge. The numerical results indicate that local to global buckling transition can be predicted within a relative error of 6% in terms of the applied strains. The expected pattern combinations are triggered even for the case of multiple patterns.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/GX19-26143X" target="_blank" >GX19-26143X: Neperiodické materiály vykazující strukturované deformace: Modulární návrh a výroba</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Computer Methods in Applied Mechanics and Engineering
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
372
Číslo periodika v rámci svazku
113333
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
—
Kód UT WoS článku
000592532900007
EID výsledku v databázi Scopus
2-s2.0-85090117223